
Supplementary Information: Information processing driven by multicomponent
surface condensates

Supplementary Note 1: Model A Dynamics

Deriving Mean-Field Dynamics
In this section, we derive the mean-field dynamics for an effective interaction matrix χ and reservoir potential µ⃗res used
in the manuscript. For simplicity in deriving these dynamics, we make no distinction between input, output, and hidden
species, and we assume that inputs can also exchange with the reservoir; we relax this assumption at the end of the
derivation by setting their mobilities to 0. Accordingly, the surface exchanges with an infinite reservoir held at a chemical
potential vector µ⃗′′

res. In a slight abuse of notation compared to the manuscript, we extend objects (ϕ⃗, χ, µ⃗′′
res) to have

an additional 0 index to denote the solvent, such that when the solvent is included as an explicit variable, we index
from 0 to N rather than from 1 to N . We additionally define the chemical potential vector µ⃗′

res ≡ 0 ◦ µ⃗
(in)
res ◦ µ⃗res, where

µ′
res,i = µ′′

res,i −µ′′
res,0 is the reservoir potential of species i relative to the solvent. Written in this way, the vector µ⃗res is the

same as in the manuscript.

When the concentration vector ϕ⃗ is treated as a function of space, the Landau-Ginzburg Hamiltonian describes the
effective free energy of the surface as

βH =
∫

dV

[
ΩG

(
ϕ⃗,χ

)
+ κ

2

(
∇ϕ⃗
)2
]

(S1)

where
(

∇ϕ⃗
)2

=
∑N

i=0
∑d

n=1 (∂xnϕi)2. The κ term penalizes spatial gradients in the homogeneous system and the
grand-potential is as described above for the surface exchanging with an infinitely large reservoir. For an open system at
some initial composition, the relaxation to steady-state is driven by an exchange of species (without conserving counts).
Near equilibrium, model A dynamics (50) characterizes these relaxation dynamics as purely downhill: the decrease in the
overall free energy of the system is, to a first approximation, driven by linear gradients of the free energy with respect to
the system’s composition. Since we assume our surface remains well-mixed, we neglect the contributions from spatial
gradients (and thus the interfacial energy between the surface volume and the reservoir). Thus, the temporal evolution of
the average volume fraction ϕi of species i within the system can be written as

∂ϕi(t)
∂t

= −
N∑

j=0
D′

ij
δ(βH)

δϕj
+ηi(t) (S2)

= −
N∑

j=0
D′

ij
∂ΩG

∂ϕj
+ηi(t) (S3)

where D′ is the mobility matrix, again with index 0 corresponding to the solvent, that sets the rate of exchange between
the system and reservoir. The above equation reflects the fact that, rather than purely decreasing energies, model A
dynamics also explicitly permits modeling the effect of temporally uncorrelated thermal fluctuations, described by ηi, such
that

⟨ηi(t)ηj(t′)⟩ = 2βD′
ijδijδ(d)(t− t′). (S4)

We mention this term for completeness but focus on the purely deterministic limit in this paper. Thus, the effective
dynamics of the system’s composition as it exchanges with the reservoir are given by

dϕi

dt
≈ −

N∑
j=0

D′
ij

∂ΩG

∂ϕj
(S5)

In writing our solute dynamics in the main manuscript, we treat the solvent implicitly. We first show below that this is tacit
to assuming that the solvent molecules rearrange and equilibrate quickly to any small changes in solutes. The free energy
is

Ωsurface =
N∑

i=0
ϕi logϕi + 1

2

N∑
i=0

N∑
j=0

ϕiχijϕj − µ⃗′′
res · ϕ⃗ (S6)

There is still a constraint
∑N

i=0 ϕi = 1. We derive the dynamics of the system assuming Model A dynamics, where the
mobility matrix D′ is determined by first assuming that the mobility follows Fick’s law of diffusion in the dilute limit, such
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that D′
ij = diϕiδij (35), and imposing the constraint via a Lagrange multiplier, so that ΩG = Ωsurface − λ

(∑N
i=0 ϕi −1

)
.

The dynamics from eq. S5 are therefore

∂ϕi

∂t
= −diϕi

(
∂Ωsurface

∂ϕi
−λ

)
= −diϕi

[
β
(
µ′′

i −µ′′
res,i

)
−λ
]

(S7)

where

βµ′′
i = 1+logϕi +

N∑
j=0

χijϕj (S8)

The constraint is given by dΩG
dλ = 0, which once differentiated is

N∑
i=0

∂ϕi

∂t
= −

N∑
i=0

diϕi

[
β
(
µ′′

i −µ′′
res,i

)
−λ
]

= 0 =⇒ λ =

∑N
j=0 djϕjβ

(
µ′′

j −µ′′
res,j

)
∑N

k=0 dkϕk

(S9)

Substituting λ and grouping the terms gives the dynamics

∂ϕ⃗

∂t
= −D′β

(
µ⃗′′ − µ⃗′′

res
)

, D′
ij = diϕi

(
δij −

djϕj∑N
k=0 dkϕk

)
(S10)

We now apply model assumptions. We assume first that d0 ≫ di for i > 0 (implying that the solvent relaxes much faster
than the solutes), second that the solvent is inert (taking χ0j = 0 for all j), we can express the system dynamics in terms
of the solute concentrations,

∂ϕ0
∂t

≈
N∑

j=1
βdjϕj

(
µ′

j −µ′
res,j

)
(S11)

∂ϕi

∂t
≈ −βdiϕi

(
µ′

i −µ′
res,i

)
, i > 0 (S12)

or
∂ϕ⃗

∂t
≈ −D′

fβ
(
µ⃗′ − µ⃗′

res
)

,
(
D′

f
)

ij
=
{

djϕj(δ0j −1), i = 0
diϕiδij , i > 0

(S13)

where

βµ′
i = β

(
µ′′

i −µ′′
0
)

= logϕi − log(1−ϕT )+
N∑

j=1
χijϕj (S14)

is the intrinsic (non-dimensionalized) chemical potential vector and ϕT =
∑N

i=1 ϕi is the total solute volume fraction (i.e.
omitting the solvent). The equations for i > 0 therefore form a matrix equation that is approximately diagonal in the limit
of fast solvent dynamics.

Furthermore, this equation provides the solute dynamics used throughout this paper when we set di = 0 for 1 ≤ i ≤ Nin
and di = d for i > Nin, where d is a constant whose value does not affect the steady state. In this case, the input
species are confined to the box, and the solute dynamics can be further simplified to be written only in terms of the
(Nout +Nh)× (Nout +Nh) lower block of the full mobility matrix D′

f ; this truncated matrix, which we label D, is the mobility
matrix used in eq. 8. Likewise, because the solvent is being treated implicitly and the inputs cannot exchange with the
reservoir, the reservoir can be described by the length-(Nout + Nh) chemical potential vector µ⃗res that includes only the
output and hidden species—the convention used throughout the paper.

The solvent equation (i = 0) follows from—and implies—the constraint ϕ0 = 1−ϕT , since the solvent balances the flux of
the solutes. Empirically, we also find that relaxing this assumption (by taking the solvent to have finite mobility compared
to the solutes) essentially does not alter steady-state (or "performance") of trained multiphase fluids (Fig. S6).

Parameterizing the Dynamics
This section offers a parametrization for the case where we have fast solvent dynamics. Again, for the simplicity of the
derivation, we consider all solutes (including input species) as mobile and therefore also take the reservoir potential vector
to again be µ⃗′

res, which is measured with respect to the solvent chemical potential.
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Proposed Parametrization. In practice, the logarithmic terms in eq. S14 become unstable for ϕi → 0 or ϕT → 1, making
even the simplified model in eq. S13 difficult to integrate. Eq. S14 therefore suggests the following parametrization:

xi = log
(

ϕi

1−ϕT

)
⇐⇒ ϕi = exp(xi)

1+
∑N

j=1 exp(xj)
(S15)

In this parametrization, the chemical potential vector simplifies to

βµ⃗′(x⃗,χ) = x⃗+χϕ⃗(x⃗) (S16)

This parametrization has the benefit that it spans all real numbers, thereby transforming the problem from a system of
ODEs with constraints ϕi > 0 and ϕT < 1 to one that is unconstrained.

The inverse Jacobian of this transformation is

(J−1)ij = ∂xi

∂ϕj
= 1

ϕj
δij + 1

1−ϕT
(S17)

As a result, the time-evolution of x⃗ is governed by

dx⃗

dt
=

N∑
j=1

dx⃗

dϕj

dϕj

dt
= −

N∑
j,k=1

dx⃗

dϕj

(
D′

f
)

jk

∂ΩG

∂ϕk
= −βJ−1D′

f
[
µ⃗′(x⃗,χ)− µ⃗′

res
]

(S18)

where µ⃗′(x⃗,χ) is as defined in eq. S16. The transformed mobility matrix has components(
J−1D′

f
)

ij
= δij +dj exp(xj) (S19)

In the case of fixed input concentrations, we take di = 0 for 1 ≤ i ≤ Nin, such that ϕ′
i(t) = 0 for the input species. Note

that in the new parametrization, the input parameters x⃗in = x⃗in(ϕ⃗) are no longer constant. However, the total input
concentration of the surface is fixed at

∑
1≤j≤Nin

ϕj ≡ ϕin,T , and thus the non-input xi can be evolved without needing to
simultaneously evolve the input xi, since

1+
N∑

j=1
exp(xj) =

1+
∑

j>Nin
exp(xj)

1−ϕin,T
(S20)

This relation allows for the non-input components of ϕ⃗(x⃗) in eq. S16 to be written independent of the input xi coordinates.
In turn, eq. S18 depends only on the (fixed) values of ϕ⃗in and the non-input parameters xi.
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Supplementary Note 2: Training the model

Learning Rules
We optimize over both the χ matrix and the reservoir chemical potential µ⃗res, with the target being an enrichment in the
desired output species for a given input concentration vector ϕ⃗in. Unlike in the case of an artificial neural network, where
there are no physical constraints on the weights assigned to the hidden layers, a surface is constrained to have total
volume fraction 1. Therefore, unlike the unconstrained problem, the cross-entropy of the output vector is not a favorable
loss function, because imposing that the desired output concentration be as close as possible to 1 depletes the volume
fraction available to the hidden species, thereby limiting their effectiveness. We require instead that the following criteria
be captured by our loss function:

1. The final concentration of the desired output species should be above some threshold value ϕmax = A/N , where N
is the total number of particle species and A is a value to be specified.

2. The final concentrations of the undesired output species should be below some threshold ϕmin = B/N , where B is
a value to be specified.

These two criteria in turn enforce that the ratio of desired to undesired outputs should be above a set threshold A/B, and
that this ratio is attained with a sufficiently enriched output species. In principle, for a steady-state concentration vector ϕ⃗
where the j’th output is desired to be enriched, the above criteria are satisfied by a contribution to eq. 9 of

l
(0)
j (χ,µ⃗res) = −

∑
k ̸=j

log
[

min(1,ϕout,j/ϕmax)
max

(
1,ϕout,k/ϕmin

)] (S21)

which enforces that the ratio in the argument of the log be as close as possible to 1, and therefore that ϕout,j/ϕout,k >

ϕmax/ϕmin, while the numerator and denominator are independent of ϕ⃗out when their values are above and below (re-
spectively) their corresponding threshold values. This function indeed allows for successful decision boundaries to be
sculpted. In practice, we further adjust this loss empirically to improve training. In particular, we use the fact that

− log
(

min(1,x)
max(1,y)

)
= − log(min(1,x))+ log(max(1,y)) (S22)

= − log(1−max(0,1−x))+ log(1+max(0,y −1)) (S23)

= log(1+max(0,1−x))+ log(1+max(0,y −1))+O(x2) (S24)

Motivated by this expansion, and combined with empirical tests, we use the loss function

lj(χ,µ⃗res) = log
(

1+Amax
(

0,1−
ϕout,j

ϕmax

))
+
∑
k ̸=j

log
(

1+B max
(

0,
ϕout,k

ϕmin
−1
))

(S25)

We’ve deviated from the expansion of eq. S21 by dropping the factor of (N − 1) that would otherwise be on the i-
dependent logarithm and also by introducing the hyperparameters A = ϕmaxN and B = ϕminN as prefactors in the
logarithms. We find that this choice for the loss loss gives strong results near decision boundaries. Substituting the
expressions for A and B results in the form of the loss function in the main text.

Hyperparameter choices
We minimize L with respect to χ and µ⃗res over several thousand training epochs using an RMSProp algorithm from the
Optax library (51, 52) with an initial learning rate of 0.01, followed by several thousand more epochs with a learning rate
of 0.001 to improve convergence. We use 5000 training points and a mini-batching scheme where nbatch = 128 randomly
selected training points are evaluated at each epoch. Once trained, we construct a validation set of 500 data points
to validate the classifier. For a given number of hidden species, we perform this optimization procedure over 15 initial
guesses in the loss landscape. Using the definition of success Sc in eq. 13, the trained model performance is evaluated
on the validation set and the best performing model is subsequently applied to an independent test set (of same size as
the validation set) and depicted in figures.
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Supplementary Note 3: Decision boundary

To understand the constraints on the shapes the decision boundary can encode in our model, we first provide insights
with a simplified model only 2 inputs and 2 output species, and expand in later sections to explore the effect of adding
more species.

2 input + 2 output + 0 hidden species
In the case of mixtures with 2 input species (with species labels i = 1,2) and 2 output species (with species labels i = 3,4),
the concentration vector is given by ϕ⃗ = (ϕin,1,ϕin,2,ϕout,1,ϕout,2). The decision boundary is defined as the manifold where
output species are equally recruited, with ϕout,1 = ϕout,2 ≡ ϕo. For a trained mixture with parameters (χ,µ⃗res), the steady-
state conditions of eq. S13 along this manifold are

µres
out,1 = log(ϕo)− log(1−ϕT )+

4∑
j=1

χ3jϕj (S26)

µres
out,2 = log(ϕo)− log(1−ϕT )+

4∑
j=1

χ4jϕj (S27)

Defining ∆µres,out = µres
out,1 − µres

out,2, the difference of the above two equations is independent of the specific value of the
output concentrations,

∆µres,out = (χ31 −χ41)ϕin,1 +(χ32 −χ42)ϕin,2 (S28)

and defines a decision manifold across which the recruited output species changes from species 1 to species 2. Recall
that all diagonal elements of χ are 0 by definition, and the output-output interaction contributions cancel exactly thanks to
the symmetry χij = χji. The decision boundary described in eq. S28 is therefore exactly linear in the inputs. Fig. S2A
shows two theoretically computed linear boundaries using eq. S28.

Nin input + Nout output + 0 hidden species
Generalizing to Nin input species (with species labels i = 1, . . . ,Nin) and Nout output species (with species labels i =
Nin +1, · · · ,Nin +Nout, such that ϕNin+n = ϕout,n for n = 1, . . . ,Nout), we see that the decision boundary between any two
output species at equal concentrations (ϕout,n ≡ ϕi = ϕo = ϕj ≡ ϕout,m) can similarly be written as

∆µ
(n,m)
res,out =

Nin∑
k=1

(χik −χjk)ϕin,k +
Nin+Nout∑
k=Nin+1
(k≠i,j)

(χik −χjk)ϕk(ϕ⃗in, µ⃗res,χ) (S29)

where ∆µ
(n,m)
res,out = µres

out,n − µres
out,m. The first term is the generalization of eq. S28 to sum over all inputs, and second term

is a sum over the remaining (non-boundary) output species. Unlike the previous case, here we treat the concentrations
of non-boundary output species as nonlinear functions of input species, and as such they could encode more complex
boundaries. Strictly speaking, as the energy landscape may have multiple local minima, the final output concentrations
may not be uniquely determined by the input concentrations; however, in this work, training appears to avoid this situation
for the cases we have tested, in part, because during training, the initial hidden/output concentrations are randomly
assigned at different epochs. When training is successful, target surfaces typically enrich a single output species with
the others being depleted, and the resulting output concentrations will have ϕk ≪ 1 for k ̸= i, j. Since the χ matrix
has components that are constrained to be |χij | < χmax, the second term in eq. S29 should therefore be negligible for
solutions obeying the loss criterion. As a result, trained mixtures of surface condensing species form generalized linear
boundaries as a function of input species concentrations:

∆µ
(n,m)
res,out ≈

Nin∑
k=1

(χik −χjk)ϕin,k (S30)

Fig. S2B shows two theoretically computed boundaries using eq. S30 for Nin = 2, Nout = 3, compared with numerical
results. This linearity breaks down in the vicinity of points in the input space where multiple classes meet, in which
case there are more than two relevant output species, and the second term in eq. S29 is no longer negligible. The
decision boundaries therefore resemble hyperplanes far from regions of multiclass intersection, but can also potentially
be nonlinear.
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2 input + 2 output + 1 hidden species
In general, with the inclusion of hidden nodes, the equations become analytically intractable. Here we consider the
inclusion of a single hidden species and show that this is sufficient for producing nonlinear decision boundaries. We
consider a concentration vector as defined above, where indices 1 and 2 correspond to input species, 3 and 4 correspond
to output species, and an additional component (species index 5) corresponds to the hidden species. The concentration
vector then reads as ϕ⃗ = (ϕin,1,ϕin,2,ϕout,1,ϕout,2,ϕh). When ϕout,1 = ϕout,2 = ϕo, the decision boundary follows eq. S28
with the the modification

∆µres,out = (χ31 −χ41)ϕin,1 +(χ32 −χ42)ϕin,2 +(χ35 −χ45)ϕh(ϕ⃗, µ⃗res,χ) (S31)

While the concentration of the hidden species is (assumed to be) an implicit function dependent on input concentrations,
the shape of this boundary is generically hard to interpret. The chemical potential of the hidden species is given by

µh = log(ϕh)− log(1−ϕT )+
5∑

k=1
χ5kϕk

Since χ5,5 = 0, the sum on the right hand side is independent of ϕh, and we can therefore isolate for ϕh as

eµh = ϕh

(1−ϕin,T −2ϕo)−ϕh
exp

(∑
k

χ5kϕk

)
=⇒ ϕh =

1−ϕin,T −2ϕo

1+exp(−µh +
∑

k χ5kϕk) (S32)

and the decision boundary in the input space thus obeys

∆µres,out = (χ31 −χ41)ϕin,1 +(χ32 −χ42)ϕin,2 +
(χ35 −χ45)((1−2ϕo)−ϕin,1 −ϕin,2)

1+exp(−µh +(χ35 +χ4,5)ϕo)exp(χ51ϕin,1 +χ52ϕin,2) (S33)

Fig. S2C shows two nonlinear decision boundaries for systems with a single hidden species, computed theoretically from
eq. S33, against numerical results. To see how this rather complex equation permits nonlinear boundaries, it is instructive
to look at the following limit when (a) input-output interactions are identical across species, (b) output-hidden interactions
are non-zero and different, and (c) hidden-input interactions are strong and of opposing signs. Here, the boundary will
primarily be defined by variances in the relative interaction of the hidden species with the two inputs. The features of such
a decision boundary in the input plane can be computed as an implicit derivative from the decision boundary since output
concentrations at the decision boundaries are low (ϕo ≈ 0) and hence eq. S33 is of the form f(ϕin,1,ϕin,2) = 0. As such,

dϕin,2
dϕin,1

= −
df/dϕin,1
df/dϕin,2

= −
1+g(µh, ϕ⃗in)(1+χ51(1−ϕin,1 −ϕin,2))
1+g(µh, ϕ⃗in)(1+χ52(1−ϕin,1 −ϕin,2))

(S34)

where
g(µh, ϕ⃗in) = exp(−µh)exp(χ51ϕin,1 +χ52ϕin,2) (S35)

While the prefactor functions g are always positive, the second factor of the form χ5j(1 − ϕin,1 − ϕin,2) for j ∈ [1,2] can
change the sign and magnitude of the whole term depending on a particular choice of parameters. In general, this implies
that not only is the decision boundary nonlinear (i.e. non-uniform slope for changing magnitude) but also capable of
changing curvatures (i.e. changing of slope signs).

Nin input + Nout output + p hidden species
In general, since ϕout,n and ϕh,m are implicit functions of the input volume fractions ϕin,k, one cannot assume any partic-
ular shape of the decision boundary on the input space.
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A potential route for a universal approximation construction
A hallmark of general-purpose machine learning architectures is that there is a well-defined sense in which they can
approximate any target function of any complexity by scaling their size. The universal approximation theorem for multilayer
sigmoidal feedforward networks used in early backpropagation algorithms is a canonical example of this kind of argument
(85, 86). Motivated by this, and making the assumptions outlined below, we discuss a path towards showing that arbitrary
continuous decision boundaries can be achieved by surface condensates by increasing the number of hidden species.

Linear decision boundaries and connection to winner-take-all dynamics. We first revisit the mixture considered above, con-
sisting of Nin input species and Nout output species, where all the output species are strongly mutually repulsive and thus
form distinct condensates that are each enriched only in one output species. The decision boundary between a conden-
sate of output species m and another with output species n is given by eq. S30 (where ϕout,m ≈ ϕout,n = ϕo ≫ ϕout,i ̸=m,n),
rewritten for simplicity as

Nin∑
k=1

(χmk −χnk)ϕin,k − (µres
out,m −µres

out,n) = 0 (S36)

As originally noted, the decision boundaries are linear planes in the input space. Finally, the non-dimensionalized energy
of a surface (as seen in eq. 5) of a condensate enriched in output species m (ϕout,m ≈ ϕo) and only with negligible
amounts of other output species can be approximated as:

Ωm
surface ≈

N∑
i=1

ϕi logϕi +(1−ϕT ) log(1−ϕT )+(
Nin∑
i=1

χimϕin,i −µres
m )ϕo (S37)

We define the corresponding score function

fm(ϕ⃗in) =
Nin∑
k=1

χkmϕk −µres
m = w⃗m · ϕ⃗in + bm . (S38)

Assuming the output condensate composition doesn’t change majorly away from decision boundaries, the free energy
difference between surface condensates enriched in output pairs (m,n) can be written as:

Ωm
surface −Ωn

surface = ϕ0
(

fm(ϕ⃗in)−fn(ϕ⃗in)
)

(S39)

Since the mean-field model drives a steady-state composition that minimizes this free energy, we see that eq. S39 gives
rise to a winner-take-all (WTA) form of dynamics. That is to say, output n dominates other output species in the condensate
when

n = argminm fm(ϕ⃗in) = argminm w⃗m · ϕ⃗in + bm . (S40)

In this sense, surface condensation behaves as a locally linear classifier with tunable weights and biases (w,b) familiar in
machine learning (86). Thus the linear decision boundaries, in general, can be shaped with arbitrary slope and bias over
the input space (eq. S38), following the general existence argument for WTA-dependent universal approximators (86–88).
Interestingly, a number of distinct biophysical and synthetic molecular networks have been shown to exhibit such WTA
dynamics in the dilute limit arising from competitive binding or reactions (89–92).

Function approximation construction. We consider the following problem: Given Nin input species and Nout output species,
we desire a target decision function g(ϕ⃗in) ∈ {1, . . . ,Nout}. When g(ϕ⃗in) = j, as with the original model definition, we
require the output species j to be selectively recruited at much higher concentrations over other output species, i.e.,
ϕout,j = ϕ∗ ≫ ϕout,k ̸=j . Note that, in this formulation, we don’t require an absolute high value for ϕ∗, just that it is much
more than other output species. Our goal is to design χ and µ⃗res that can achieve this for arbitrary g.

To achieve this, we suggest the following construction, outlined in Fig. S3. First, we consider a linear partition of the
Euclidean input plane RNin into np cells. For example, a specific instantiation of this would be the Voronoi tesselation of

np prototypical input concentrations,
(

ϕ⃗1
in, ϕ⃗2

in, ...., ϕ⃗
np
in

)
. Importantly, np ≫ Nout is a free parameter, and as it increases,

one can achieve increasingly finer partitioning of the input space. With this partitioning, note that pairs of cells share linear
decision boundaries and a finite number of vertices where 3 or more decision boundaries meet.
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Following our connection to linear partitions in eq. S39, we propose including 1 species for each of the np classes,
which we label as hidden species (Nh = np). Despite the label name, hidden species are treated similar to outputs, in
that interactions between any two hidden species is unfavorable χij = (1 − δij)χpen for hidden species i and j, where
χpen ≫ 0. At strong interactions, this is sufficient to encode for condensates that are each enriched in 1 hidden species
and exclude all others. As described by eq. S30, the resulting molecular network encodes linear boundaries between
condensates enriched in pairs of hidden species m,n. From the score function eq. S38, we see that boundary slopes
(weights) and intercepts (biases) are determined by the subset of tunable interactions (χkm,µres

m ) are freely chosen for k
being any input species and m being any hidden species. For a desired partitioning, these values can be assigned by the
system of linear equations or gradient-descent based approaches.

With this construction, we return to the original objective of achieving a decision boundary of type g(ϕ⃗in) with Nout output
species. Note that, with np ≫ Nout, for a specific function g, we need to appropriately assign each of the np cells to the
appropriate output. To accomplish this, we enforce that each hidden species is repulsive with all but one output species,
with χij < 0 if the output species i is the desired coloring of the cell with enriched hidden species j. As before, all the
Nout species also have unfavorable interactions between each other. Generically, since multiple cells can be colored with
the same output, this provides a many-to-one attractive interaction from hidden species to outputs. We stipulate that the
output species reservoir potentials are identical, cannot directly interact with inputs, and are tuned to low levels so that
they don’t affect the equilibrium steady-state rich in hidden species. This is, in principle, analogous to a "client" (output)
and "scaffold" (hidden) relationship that has been proposed to study biological condensates (14). A different decision
boundary can be achieved by simply reassigning the hidden-output map of interactions as above. With sufficiently large
np, this model should enable for increasingly complex decision boundaries.

This construction provides sufficient basis for our universal function approximation claim subject to assumptions specified
below. Specifically, the input plane is partitioned into linearly separable regions that each exhibit WTA classification,
the number of regions can scale with the number of hidden species, and selective mapping of hidden-output species
can approximate arbitrary decision functions—analogous to what is known as a piecewise linear machine for pattern
recognition (86, 88). It is intriguing to note that although the universality of this construction relies on potentially using
many hidden species, any given resulting condensate is dominated by just one hidden species and one output species;
the molecular complexity of the system is not reflected in the simplicity of the outcome. Beyond existence, the surface
condensation driven WTA regions are more flexible than the Voronoi-inspired construction above, so they might be able
to achieve a given level of approximation with fewer units; similarly, gradient descent training may be able to find better
approximations with fewer units by exploiting non-"one-hot" hidden representations, direct input-to-output interactions, and
other nonlinearities.

We consider the above to only be a rough sketch for a universal approximation theorem for surface condensation. Our
framework makes several assumptions (below) that still require rigorous testing.

Key assumptions. First, note that this construction is only true away from parts of the input space where multiple decision
boundaries meet, i.e., vertices of the decision planes, which we assume only excludes a finite number of points from an
infinite plane. Second, within each decision region (a particular group of input surfaces as per our model definition), we
assume that the "one-hot" condensate encoded by the complementary hidden species is always the only steady-state with
negligible composition of other species. While this steady-state should naturally exhibit WTA behavior in the mean-field
limit (see eq. S39), this is unlikely in 3D liquids, where pockets of distinct phases may coexist within the same surface.
Third, we assume the selective inclusion of hidden-output favorable links do not destabilize or change overall boundaries.
Finally, since we require liquid-like condensates, the range of allowable χpen values are constrained. The extent to which
these assumptions hold require further investigation.
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Supplementary Note 4: Lattice liquid model

Lattice setup and boundary conditions
All simulations are performed on a three-dimensional cubic lattice of dimensions 24 × 24 × 24. Each lattice position
p = (z,y,x) can be occupied by a single species from the set {0,1, . . . ,N}. Species 0 is treated as an inert solvent with
zero chemical potential and inert interactions. The boundaries are walls meaning that no interactions wrap around from
one lattice face to its opposite face. Consequently, any site on a boundary has fewer neighbors than an interior site. To
capture interactions out to

√
2 in Euclidean distance, each lattice site has up to 18 neighbors. Specifically, if p1 and p2

differ by at most 1 in up to two of their three coordinates, then p2 is in the neighborhood of p1. Positions outside the lattice
bounds are ignored.

Free energy model
Let ϵij denote the pairwise interaction parameter between species i and j, and let µi denote the chemical potential of
species i. We work at inverse temperature β = 1/(kBT ). For a given configuration σ, the total interaction energy is
computed by summing over all lattice sites. A configuration σ induces a count ni for each molecule type i. Defining δa,b

as the Kronecker delta, which is 1 if a = b and 0 otherwise, the count ni is given by

ni =
∑

p
δσ(p), i, (S41)

where the sum is taken over all lattice sites p in the system. In practice, for each site p with species i = σ(p) and each
neighbor q with species j = σ(q), we add β χij . To avoid double counting, we include a factor of 1

2 in the total. The free
energy, including chemical potentials, for a particular configuration may be written as:

βH(σ) = 1
2 β
∑

p

∑
q∈V (p)

ϵσ(p),σ(q) + β
N∑

i=1
γi ni, (S42)

where V (p) denotes the neighborhood of site p, and species 0 (solvent) has µ0 = 0 by definition.

Parameter mapping from Model A
The interaction energies and chemical potentials used in these lattice Monte Carlo simulations are derived from Model
A. Specifically, a mapping is applied to convert the Model A parameters (denoted χ,µ⃗res) to lattice-gas (LG) parameters
(ϵij ,γi). First, to convert from the the mean field description (at β = 1) to our lattice gas formulation, the pairwise interaction
coefficients are scaled by a factor of 1

Nneighbors
which becomes:

ϵij = 1
18 χij (S43)

Note that, in this choice, the assumption of effective solute-solvent interactions as negligible is accomplished by setting
ϵii = ϵi0 = ϵ00 = 0 and thus χi0 = 0, where 0 indexes the solvent (as seen more clearly in a later subsection). We set the
solvent potential also to be γ0 = 0, and under these assumptions

γi = −µres,i ∀i ∈ (Nin +1,N) (S44)

Canonical vs. Grand Canonical moves
We implement two fundamental move types in each MC step:

(1) Canonical (NVT) moves, which exchange species between two lattice sites to conserve particle counts;

(2) Grand Canonical (µVT) moves, which insert or remove species at a single site, exchanging with an implicit infinite
reservoir.

We treat the “input” species (for example, species 1 and 2) as clamped, meaning they cannot exchange position within the
lattice or identity with the reservoir. For every move proposition, if an original site holds an input species, the replacement
probability is zero (no replacement allowed), keeping the counts and positions of input species fixed. By contrast, all other
species (including the solvent) can freely exchange within the remaining sites of the lattice and with the reservoir. These
species are handled using both canonical and grand canonical moves. This mixed ensemble preserves the total amount
and positions of each input species while allowing all other components to exchange with an infinite reservoir.
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Canonical (NV T ) moves. Starting from a selected collection of positions (described in more detail in GPU-Accelerated
Implementation and Masking):

• Pair up any two sites (p1,p2) (global swaps).

• Propose swapping the species at p1 and p2.

• Compute the change ∆H in interaction energy H(σ) induced by swapping the two species, and accept with the
Metropolis-Hastings probability

Paccept = min{1,exp[−β ∆H]}. (S45)

• If accepted and neither position contains a clamped species, exchange the species; otherwise leave them un-
changed.

Grand Canonical (µV T ) moves. Starting from a selected collection of positions:

• For a position p with current species i, propose one of the free (unclamped) species as new species j.

• Compute the combined energy change ∆H and chemical-potential difference ∆µ, then accept with probability

Paccept = min
{

1, exp
[
−β ∆H +β ∆µ

]}
. (S46)

• If accepted and the original species is unclamped, update the site to species j; otherwise leave it unchanged.

Initialization and equilibrium
The lattice is initialized with only input species and solvent. Input species are assigned randomly to lattice sites according
to a total sum of a fraction ϕi for each input species i. All remaining sites are filled with the inert solvent (i = 0).

Once initialized, the system is evolved via repeated MC moves (either NVT or µVT with equal probability) until the total
free energy and the species counts remain stable over a sufficiently long period (on the order of 105 accepted moves)
and independent of sampling protocol (i.e. frequency of NVT vs µVT swaps or lattice size). We record 1000 equally
spaced lattice configurations over the MC protocol and use the last 100 frames to estimate average species counts as the
near-equilibrium state for analysis. Each simulation condition is repeated in triplicate, i.e. with 3 different random seeds
but identical parameters, for averaging.

GPU-accelerated implementation and masking
All Monte Carlo sweeps are implemented in JAX and executed through the Accelerated Linear Algebra (XLA) compiler,
combining just-in-time compilation (JIT), batched parallelism (via vmap), and functional key splitting for pseudorandom
number generation (PRNG). To avoid race conditions involving calculation of the energy within the neighborhood of each
site, we paralellize each step by considering lattice positions spaced modulo four and synchronize all accepted moves
each step. Note that each step updates the entire lattice and each move within a step proposes an independent exchange
(of position or identity).

PRNG and data-flow structure. At the start of each full step, a master PRNG key is split into subkeys to select the candidate
positions of the ’reference grid’, pick per-site swap directions or replacement species, and draw Metropolis acceptance
variates. All arrays of positions, energy calculations, or acceptance evaluations are computed under a single JIT-decorated
function.

Single-mask strategy with offsets. We generate a ’reference grid’ by partitioning the cubic lattice into discrete modulo 4×4×4
blocks of sites:

ref_grid =
{

4(k, l,m) | 0 ≤ l < L/4, 0 ≤ l < L/4, 0 ≤ l < L/4
}

, (S47)

so that no two reference points share an edge. From this ’reference grid’ we can generate a shared ’offset grid’ by applying
a global offset to one of the 64 possible offset positions within each 4³ cube.
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Generating positions at each MC Step. At each step, we randomly select one of the 64 offset grids to parallelize the MC
moves. During a µVT step, we propose replacements at each site in the offset grid (excluding input species). During an
NVT step, one of 26 neighbor vectors (unit step in any x, y, and/or z) is independently applied to each offset grid point.
From these shifted points, we then draw a random permutation, split the points into equal halves, and pair them, such that
each point appears in at most one pair. This process yields non-overlapping swap proposals across the whole lattice.

Acceptance or rejection is then computed according to the Metropolis-Hastings criterion described above, independently
and in parallel for all proposed swaps, and all accepted moves are synchronized across the lattice. This parallelized pro-
cedure ensures that every lattice site has an opportunity to update while respecting the non-periodic boundary conditions
and the mixed canonical-grand-canonical setup.

Correctness versus effciency. By using one unified, randomized mask with per-site offsets and directions:

• Correctness: By construction, any two candidate sites generated from different reference points are at least two
lattice steps apart, so edges cannot be shared, and updates commute exactly. No two sites ever race to read
or write the same neighbor; counts cannot drift or desynchronize. Boundary sites (hard walls) simply have fewer
neighbor offsets.

• Efficiency: The entire nested-scan loop over all MC steps is traced once into a single XLA computation—there are
no host-side Python loops or repeated JIT invocations. All random draws, vectorized grid updates, and other per-
site operations are executed in one fused GPU kernel via vmap, giving efficient parallel throughput and minimizing
host/device synchronization and overhead.

Together, this approach delivers robust statistical correctness (no hidden synchronization bugs or particle number errors)
and optimized performance on modern hardware.

Deriving the mean-field model from the lattice liquid formulation
In this section, we establish a correspondence between the lattice model and the mean-field model discussed in the
paper. Briefly, the lattice model defines an energy for each lattice configuration (or microstate). In the mean-field limit,
we consider sets of configurations that share average species counts (or macrostates). In what follows, we show that
eq. 5 arises from the macrostate energies in the bulk limit, under certain assumptions. Furthermore, we relate the lattice
model parameters ϵij and γi to the mean field parameters χij and µres,i. This is a standard treatment, included here with
consistent terminology only as a convenience for the reader.

The lattice is a set L of positions, with ∥L∥ = S, such that the total volume of L is Sν, where ν is the volume per position.
We use η(p) to denote the neighbors of position p ∈ L, with ||η(p)|| = z being the effective valence of each particle. For
a system with N distinct solute species and 1 solvent species, a microstate configuration is σ, where σ(p) ∈ {0, . . . ,N} is
the species of the particle at position p and 0 indexes the solvent.

The energy of the lattice when in microstate σ is

H(σ) = 1
2
∑
p∈L

∑
q∈η(p)

ϵσ(p),σ(q) +
∑
p∈L

γσ(p) (S48)

=
N∑

i=0

N∑
j=i

nijϵij +
N∑

i=0
niγi (S49)

where ϵij = ϵji is the microscopic nearest-neighbor contact energy between species i and species j, and γi relates to
the reservoir chemical potential of species i. The number of i particles (a Delta function sum over all lattice sites) and i : j
interfaces are, respectively,

ni =
∑
p∈L

δi,σ(p) (S50)

nij = 1
2
∑
p∈L

∑
q∈η(p)

δi,σ(p) δj,σ(q) . (S51)

Note that the factor of 1/2 in the second sum ensures interfaces are not double counted for each pair of positions. To
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compute the sums in H(σ) symmetrically, we rewrite eq. (S49) as

H(σ) = 1
2

N∑
i=0

N∑
j=0

nijϵij(1+ δij)+
N∑

i=0
niγi (S52)

= S

1
2
∑
i̸=j

nij

S
ϵij +

∑
i

nii

S
ϵii +

∑
i

ni

S
γi

 . (S53)

The sum above has a prefactor of 1/2 for the total pair contact energies since, unlike eq. S49, the sum double counts over
all pairs of distinct species i ̸= j.

Now consider a macrostate Mn⃗ consisting of all microstates whose counts of species i are ni. As the Monte Carlo
sampling satisfies detailed balance with respect to H and the state space is fully connected, at equilibrium the probabilities
of microstates and macrostates will obey the Boltzmann distribution:

P (σ) = 1
Z

e−H(σ)/kBT where Z =
∑

σ

e−H(σ)/kBT (S54)

P (Mn⃗) =
∑

σ∈Mn⃗

P (σ) = 1
Z

e−G(Mn⃗)/kBT where G(Mn⃗) = −kBT ln

 ∑
σ∈Mn⃗

e−H(σ)/kBT

 . (S55)

We define ϕi = ni
S to be the volume fraction of species i and note that for well-mixed states, nij

S ≈ z ni
S

nj

S = zϕiϕj when
i ̸= j, and otherwise nii

S ≈ z
2 ϕ2

i . Such states σ all have similar energy

H(σ) ≈ S

z

2
∑
i̸=j

ϕiϕjϵij + z

2
∑

i

ϕ2
i ϵii +

∑
i

ϕiγi

 (S56)

= S

z

2
∑
i,j

ϕiϕj

(
ϵij −

ϵii + ϵjj

2

)
+ z

2
∑

i

ϕiϵii +
∑

i

ϕiγi

 . (S57)

In the mean-field limit, we assume that these well-mixed states dominate the free energy, and that the number of such
states is approximately ∥Mn⃗∥, which we can estimate using Stirling’s approximation that lnn! ≈ n lnn/e, so

ln∥Mn⃗∥ = ln
(

S

n⃗

)
(S58)

= ln S!∏N
i=0 ni!

(S59)

≈ S lnS/e−
∑

i

ni lnni/e (S60)

= S

(
lnS/e−

∑
i

ϕi lnSϕi/e

)
(S61)

= −S
N∑

i=0
ϕi lnϕi . (S62)

The free energy for this macrostate of the lattice is therefore

G(Mn⃗) ≈ −kBT ln∥Mn⃗∥e−H(σ)/kBT (S63)

≈ H(σ)+kBTS
∑

i

ϕi lnϕi (S64)
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and the (non-dimensionalized) free energy of L per unit volume is

Ωsurface ≡ βν
G(Mn⃗)

νS
(S65)

≈ β
H(σ)

S
+

N∑
i=0

ϕi lnϕi (S66)

= β

z

2

N∑
i=0

N∑
j=0

ϕiϕj

(
ϵij −

ϵii + ϵjj

2

)
+ z

2

N∑
i=0

ϕiϵii +
N∑

i=0
ϕiγi

+
N∑

i=0
ϕi lnϕi (S67)

= 1
2

N∑
i=0

N∑
j=0

ϕiχijϕj +
N∑

i=0
ϕi lnϕi −β

N∑
i=0

ϕiµ
′
res,i (S68)

= βνf(ϕ⃗,χ)−βµ⃗′
res · ϕ⃗ (S69)

where β = 1/kBT and χij = βz(ϵij − 1
2 (ϵii + ϵjj)) and µ′

res,i = −(γi + z
2 ϵii). We used the fact that ϕ0 = 1 − ϕT is the

solvent volume fraction and χi0 = 0 by construction to equate the first term with eq. 6. Finally, since the input species are
non-exchanging, and recalling that µ′

res,i is the reservoir chemical potential of species i, with µ⃗′
res = 0 ◦ µ⃗(in)

res ◦ µ⃗res defined
in SI Note 1, we have that

µ⃗′
res · ϕ⃗ = µ⃗res · ϕ⃗oh + const. (S70)

and so, up to a constant,
Ωsurface = βνf(ϕ⃗,χ)−βµ⃗res · ϕ⃗oh (S71)

is in agreement with eq. 5. Note that for simplicity, lattice simulations are run with ϵii = 0 = ϵ0i, so ϵij = χij

βz for z = 18
and γi = −µ′

res,i.
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Supplementary Note 5: Analyses

Phase number and composition calculation
The steady-state compositions of the nset surfaces from the mean-field dynamics are gathered into a matrix B = nset ×
(Nout + Nh), and given the large number of surfaces, we generically assume Nout + Nh ≪ nset. Subsequently, the matrix
is normalized (mean-centered and standard-deviation set to 1) and the covariance matrix’s eigenvalues (i.e. eigenvalues
of BT B

Nout+Nh
) is computed. If the normalized matrix was populated purely with i.i.d values from N(0,σ = 1), the Marchenko-

Pastur distribution (54) guarantees that the eigenvalues would be smaller than λ =
(

1+
√

Nout+Nh
nset

)2
. Thus, eigenvalues

larger than this are unlikely to arise from compositions sampled randomly around a typical composition (i.e. of a particular
phase) and when no eigenvalues are significant, we assume that there is only 1 typical phase composition. Note that this
is an approximation since the MP distribution does not generically guarantee that eigenvalues from “signa” cannot be less
than the above λ, and only that the eigenmodes from “noise” cannot be larger—so the number of phases we estimate may
be lower than actually present. With that caveat, we use the number of significant modes (larger than above threshold) to
estimate number of phases as nphases = n(eig > λ) + 1. With this estimate, we employ a hierarchical clustering method
to group the nset surfaces into nphases compositions. The average composition of each phase is computed as the mean
composition of all the surfaces clustered into the same phase and reported in Fig. 4.
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Supplementary Note 6: Random fluids

Fluids with random collection of interactions
We explore whether fluids with a random interaction network (as reported in Fig. 5) can be trained to classify distinct
decision boundaries by simply tuning concentrations. For this, we first initialize a system with 2 inputs, 2 outputs, and a
large ensemble (Nh = 30 in Fig. 5B) of hidden species. In a given trajectory, the relevant pairwise interaction (χij) are
directly sampled as follows: first a random variable x is sampled uniformly from [−1,1] and transformed to obtain χij =
χm tanh(x), where χm = 15 is chosen to set a maximum strength of interactions χmax ≈ 12. This resulting transformed
distribution is not perfectly uniform and is biased a bit towards higher values of χ. The output-output interactions are set
to favor demixing as above. With this initial, frozen interaction matrix, we perform training as described above, except over
3000 epochs, to minimize the loss by only changing the reservoir potential µ⃗res. Since the interaction matrix is sampled
randomly and frozen, we repeat this training across 30 replicates and for distinct decision boundaries. The results of these
tests are presented in the manuscript.
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Supplementary Note 7: Sharp edges of the model

Reservoir
A central assumption of the model is that the trained reservoir potential (µ⃗res) will be maintained by the cellular milieu,
likely through out-of-equilibrium mechanisms. Note that this assumption does not directly posit any further requirements
of such a reservoir. That is, it could exist as a single or multiple coexisting phases, and either be dense or dilute—as
long as the reservoir potential remains constant (µ⃗res) and unaffected by the exchange with surfaces. While not explicitly
modeled in our study, we briefly discuss potential considerations in designing biological/physical models of reservoirs.

Biological reservoirs: The cellular millieu typically contains the same molecular repertoire but is generically coupled
to various active processes. For example, molecules are routinely created and destroyed through active reactions, and
cytoplasm/nucleoplasm resident molecules like chaperones and disaggregases (93, 94) contribute to partial solubilization
of the reservoir. Thus, explicit models of the chemical potential remain challenging to describe.

Physically realizable reservoirs: In physical or synthetic systems, particularly those at equilibrium, one pertinent ques-
tion relates to properties of the reservoir. In particular, what are its corresponding composition and stability? This re-
quires a specific model of the reservoir. For example, one could allow for the same mean-field like treatment of the
entropy/interactions for the reservoir as was used for the surface, except it could exist at a different, larger volume Vres. If
we further assume that the reservoir is input-free—comprised of only hidden, output, and solvent species—one can invert
the 0⃗ input surface composition to get a reservoir composition from the model A dynamics.

We discuss next how this inferred composition is guaranteed to be thermodynamically stable i.e., outside of the spinodal,
and as such, will not spontaneously phase separate. This emerges because the criteria for the thermodynamic stability

of the surface is d2Ωsurface
dϕiϕj

= δij

ϕi
+ 1

ϕT
+ χij is positive semi-definite (i, j ∀ Non-input species). This is guaranteed by

construction, since the gradient descent procedure employed in the mean-field model finds local minima of Ωsurface that
must satisfy this constraint. Importantly, the input-associated terms and linear reservoir terms do not explicitly show up
in this Hessian. The above term is identical to the Hessian of the free energy that describes a box of finite volume
comprising non-input only species at the identified steady-state composition. Physically, this can be interpreted as the
stability of non-input species in a canonical ensemble, or in other words, following the βνf like-term that we describe in
eq. 6 only for the pertinent species. The lack of input-related terms, despite their contribution in the free-energy, stems
from their constraints in the model. Since inputs are both clamped in space and position, ϕin,i is not a free parameter that
is capable of fluctuations. Thus, their interactions with non-input species can be re-interpreted as an (linear) "internal"
chemical potential coupling, i.e., βEin−i,k = (χikϕin−i)ϕk ≡ µint

ik ϕk ∀k ∈ (Nhid,Nout), ∀i ∈ Nin An important caveat
to note is that this Hessian does not guarantee stability of a mixture where inputs also contain translational entropy
i.e. the ability to move in space. Although their counts are fixed, input species can now undergo spatial fluctuations,
and thus can change the stability of the surface. Evaluating the stability of the whole surface requires determining:
d2Ωsurface
dϕidϕj

, i, j ∀(Nin,Nout,Nhid) - inherently not possible directly in the spatially unresolved mean-field model described
here but could be studied by incorporating spatial gradient terms (as in eq. S1) leading to a Cahn-Hilliard type formulation
or through lattice models. Note that this stability would also depend on input-associated parameters like input-input
interactions, that are not directly learned or modified in our model. Preliminary investigations of lattice simulations with
mean-field parameters, but with inputs no longer immobilized, suggest a loss in classifier performance as well as stronger
intra-surface demixing. In such cases, since inputs strongly prefer distinct outputs and are still constrained to remain
in the box, they demix to form pockets of coexisting phases with distinct outputs and compositions. These suggest the
possibility of novel, or only partially overlapping, class of (microscopic) solutions may be discovered in a model where
inputs are free to move within the surface but still incapable of exchanging with the reservoir—bearing resemblance to the
model explored for MNIST classification by (41).

However, generally such an effective composition requires the multiple assumptions stated above. More generally, it may
be experimentally advantageous to directly specify a desired reservoir composition (ϕ⃗∗

res)—for instance, an equimolar,
dilute reservoir. One could incorporate this constraint by suitably modifying our formulation to instead require that as the
molecular interaction parameters χ evolve in the optimization procedure, the reservoir potential is implicitly derived as
µ⃗res = µ⃗(ϕ⃗∗

res,χ) from the mean-field model. This will need to include an additional constraint that the Hessian matrix of
the free-energy Hij = dµres,i

dϕj
be positive semi-definite at ϕ⃗∗

res (29, 95). However, in both methods outlined here, there is
still no guarantee that the reservoir composition is stable to fluctuation-driven nucleation.

Stability and properties of surface phases
In the model formulation, the surface is treated in the well-mixed mean-field limit. Thus, we don’t explicitly consider
whether the surface itself can demix within the volume that it occupies. In this section, we discuss the assumptions that
underlie this model and where they may break down.
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Biological motivation for mean-field treatment: We begin with the context presented in the paper i.e., DNA-bound TFs
as input species on genetic loci and mobile species (polymerases, cofactors etc.) that exchange with the nucleoplasm.
DNA-bound TFs (inputs) are treated as fixed in position and space within our framework. This is motivated by the fact
that the time-scales of free diffusion and exchange from the nucleoplasm of mobile molecules is significantly faster than
for DNA-bound TFs. For example, the diffusion coefficients of chromatin, and thus molecules stably bound to it, are
typically 2-3 orders of magnitude slower than those of nucleoplasmic proteins. We ignore any internal organization of the
inputs within the surface that may emerge from the 3D DNA conformation and treat it as uniform, i.e., well-mixed. Thus
the mobile species (hidden and outputs) in our model framework effectively live in a mean-field environment created by
the well-mixed inputs. More generally, there may exist other active mechanisms like, for example, chromatin associated
remodeler proteins that stir DNA, that may further contribute to keeping the input species well-mixed.

Stability of a surface: With the above assumption that inputs are effectively randomly well-mixed in the surface, the
composition of the exchanging species (as queried by the model A dynamics) is found as a minimum of the effective free-
energy of the surface. This means the surface will not spontaneously phase separate but may still form multiple phases
from nucleation. As described in the next section, we generally find that the explicit 3D lattice model shows a single-phase
in most regions except for the region adjacent the decision boundary.

Remarks from the lattice liquid model: In the lattice liquid (see SI Note 4), for each trajectory both the overall com-
position of the input species as well as their positions are held fixed to mimic immobile, non-exchanging TFs on short
timescales. Note that the initial positions of the inputs are randomly assigned in the lattice. With this implementation,
we find that parameters trained from the mean-field model successfully translate to 3D lattice fluids as measured by the
classifier performance. This supports the idea that under the assumption of immobile, localized input species, the lattice
model generally predicts a major, single phase within the surface. When closer to the decision boundary, we see that the
lattice models deviate from the mean-field predictions (Fig. 7B). At these points, we empirically find that multiple phases
can form within within the surface that are enriched in the two distinct outputs.

Input-free surfaces: Biologically, the no-input surface is explicitly considered as a finite volume DNA loci that has no
binding sites for any of the input molecules. Thus, the "output function" of a (0,0) surface is ascribed by condensing
the appropriate output (’green’ in AND, ’pink’ in XOR, and so on). More generally, a surface absent of input species
is nonetheless described by a fixed volume V that can freely exchange with the reservoir. As discussed above, in a
(non-biological) physical reservoir that is not actively disaggregated and is constrained to a finite volume (i.e. a canonical
ensemble), we expect the same condensed phase to emerge in the reservoir as in the (0,0) surface volume.
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Supplementary Figures: Information processing driven by multicomponent
surface condensates
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Fig. S6. In training and testing the classifiers in the manuscript, we assume that the solvent has fast dynamics and can therefore
be treated implicitly according to the mass constraint of the system. However, the steady states of surfaces are largely insensitive to
the choice of solvent dynamics, as shown above. For each of the decision boundaries tested in Figs 1-3 (reproduced here for ease
of comparison as the “fast solvent” panels), we produce the same plot using dynamics in which the solvent is treated explicitly in the
dynamics and is given the same mobility as the solutes (presented as the “explicit solvent” panels). The result is a decision boundary
that looks nearly identical for all cases.
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Fig. S15. In the left column are the test predictions from Fig. 7 reproduced with a truncated colorbar ranging from 0.1 to 10 for greater
visual clarity. Next to each test prediction are the absolute concentrations of the two output species across the input space.
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