Information processing driven by multicomponent surface

condensates

Aidan Zentner', Ethan V. Halingstad®2, Cameron Chalk*, Michael P. Brenner'®, Arvind Murugan®, Erik Winfree*,

and Krishna Shrinivas?3"

School of Engineering and Applied Sciences, Harvard University, 29 Oxford St, Cambridge,MA 02138

2Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208
3Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208

4Computation and Neural Systems, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125
5Department of Physics, Harvard University, 17 Oxford St, Cambridge, MA 02138

8Department of Physics, University of Chicago, 929 E 57th St, Chicago, IL 60637

*correspondence to: krishna@northwestern.edu

Living organisms rely on molecular networks, such as gene
circuits and signaling pathways, for information process-
ing and robust decision-making in crowded, noisy environ-
ments. Recent advances show that interacting biomolecules
self-organize by phase transitions into coexisting spatial
compartments called condensates, often on cellular sur-
faces such as chromatin and membranes. In this paper, we
demonstrate that multicomponent fluids can be designed
to recruit distinct condensates to surfaces with differing
compositions, performing a form of surface classification
by condensation. We draw an analogy to multidimensional
classification in machine learning and explore how hidden
species, analogous to hidden nodes, expand the expressiv-
ity and capacity of these interacting ensembles to facilitate
complex decision boundaries. By simply changing levels of
individual species, we find that the same molecular reper-
toire can be reprogrammed to solve new tasks. Together,
our findings suggest that the physical processes underlying
biomolecular condensates can encode and drive adaptive
information processing beyond compartmentalization.

Introduction

Living organisms process information through networks of
interacting constituents spanning molecular to ecological
scales. In cells, classic examples include gene regulatory
circuits and signal transduction pathways where molecu-
lar features such as binding and copy number combine
to drive biological decisions such as discrimination, feed-
back control, adaptation, and bistability (1—4). Although
biological pathways are often described as modular (2),
where a dedicated decision-making module drives distinct
downstream events, some computational capability is em-
bedded in processes that appear to serve different cellular
tasks. For instance, the very act of building a macromolec-
ular assembly can encode and interpret high-dimensional
inputs to trigger context-specific outcomes (5-10). As an-
other example, while genetic control circuits can be engi-
neered to reduce fluctuations in molecular concentrations
(11, 12), the same control naturally emerges from the ther-
modynamics that underlies single-species phase separa-
tion (13). More generally, this kind of embedded and dis-
tributed computational power is often quite robust due to
the underlying collective physics that drives it.

Recently, biomolecular condensation has emerged as a
conserved mechanism for spatially organizing the cellular
milieu across the tree of life (14-16). Rather than being
well-mixed, molecules in cells often self-organize to form
dozens of coexisting compartments called condensates.
These compartments condense multiple biomolecules
through phase transitions (14, 17, 18), typically around in-
tracellular surfaces. Prominent examples span gene reg-
ulatory condensates that form at specific DNA (19-23) or
RNA scaffolds (24, 25), and signaling condensates that
are membrane-localized (26—28). At many surfaces, a par-
ticular combination of surface-resident molecules (i.e. “in-
puts”) like DNA-bound transcription factors or membrane-
localized receptors facilitates assembly of specific multi-
component condensates. These condensates, in turn,
selectively recruit biomolecules (i.e. “outputs”) like poly-
merases or signaling messengers from the cellular mi-
lieu to drive surface-specific downstream functions—like,
for instance, activating certain genes but not others. In
multicomponent fluids such as biomolecular condensates,
the mapping from molecular parameters to emergent high-
dimensional phase behavior is typically nonlinear (29-39).
Leveraging this, recent theoretical (40, 41) and experi-
mental (42—48) work highlights the potential of conden-
sates to perform computations beyond compartmentaliza-
tion. There is interest to understand the design principles
and constraints that accompany biomolecular condensate-
mediated computations.

In this paper, we explore the computational abilities of
biomolecular fluids to assemble surface-specific conden-
sates, i.e., a form of surface classification by condensa-
tion. First, we model the exchange of molecules between
a surface—characterized by its composition of surface-
resident input species—with the broader cellular milieu, or
“reservoir”. By exploiting differentiable methods, we tune
molecular parameters like intermolecular interactions and
reservoir makeup to imbue fluids with desired phase be-
havior. With this framework, we demonstrate that designed
fluids can deploy distinct condensates on surfaces that
only subtly differ in their input compositions. This surface
classification is driven by the formation of condensates that
recruit to certain surfaces, but not others, high concentra-
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tions of an output molecule necessary for executing spe-
cific downstream functions. The addition of extra hidden
species that can interact with all other species but can-
not functionally substitute output molecules enhances the
capacity to sculpt complex decision boundaries. We show
that this expanded expressivity is driven by encoding novel
phases that are distinct in hidden species composition but
recruit the same outputs. Once designed, we show that
simply adjusting hidden species levels in the reservoir en-
ables the same molecular repertoire to classify new tasks.
Together, our study suggests that the physics underlying
multicomponent condensates offers flexible and versatile
mechanisms for information processing in living and syn-
thetic systems.

Model Framework

Motivation

Surface condensation plays a key role in regulating in-
tracellular processes, such as the formation of activating
or silencing condensates on distinct genetic loci or vary-
ing signaling condensates on the plasma membrane (Fig.
1A) (20, 26). Typically, the combination of loci-specific
DNA-bound transcription factors (or surface-localized “in-
put” species) facilitates the assembly of particular conden-
sates. These loci-specific condensates, in turn, selectively
recruit either gene-activating polymerases (an example of
an “output” species, Fig. 1A, green) or gene-silencing re-
pressors (an example of another “output” species, Fig. 1A,
pink) that drive distinct downstream functions. Beyond in-
put and output species, transcriptional cofactors and chro-
matin remodelers (“hidden” species) often regulate phase
behavior and molecular recruitment but ultimately do not
directly drive output response. Surface-localized receptor
combinations (inputs), downstream messengers or tran-
scription factors (outputs), and adaptors/kinases (hidden
species) play analogous roles in membrane-localized con-
densation. Although these represent different biological
pathways, they share similarities in that surface-specific
properties enable the assembly of function-specific con-
densates, a form of classification by condensation.

This motivates a minimal model for the surface conden-
sation of molecules from a complex cellular milieu. The
cellular milieu is modeled as an infinite molecular reser-
voir that exchanges molecules with a surface of volume
V. Here, V describes an effective volume occupied by
the biological scaffold and adjacent interacting molecules,
and it can generically describe 2D membranes or 3D DNA
loci. In the model, species are partitioned into three types.
Input species are localized to the surface at a fixed com-
position, and distinct surfaces differ in the combination of
input species they localize. Unlike the input species, both
the output and hidden species freely exchange between
the surface and the reservoir.

With this model, our goal is to design a molecular network
such that one specific output molecule is recruited to sur-
faces with specific combinations of input molecules, and a

different output molecule is recruited to surfaces with other
input combinations. The recruitment of distinct outputs to
surfaces with specific combinations of input molecules is
possible when the molecular network encodes for multi-
ple types of condensates, i.e., multiple phases where each
phase is enriched in only one output species. The forma-
tion of one condensate over another in response to sub-
tle differences in input combinations represents a sharp
phase transition that can, in principle, be exploited to en-
gineer for ultra-sensitive switches in the recruitment of dif-
ferent output molecules by designing phase boundaries in
the space of input composition (41, 49) (Fig. 1B).

Model formulation

Towards this goal, we model a multicomponent fluid with
N solute species and an additional solvent species. These
N solutes consist of Nj, input, Nyt output, and IV, hidden
species (N = Nin + Nout + Nn). For simplicity, the sizes
of all species are assumed to be equal to the volume v
of the solvent molecule, and the mean volume fraction of
species i is therefore related to the absolute number of
particles n; within the surface by ¢; = n;v/V. We work in
the mean-field limit and assume that the surface remains
well-mixed. The surface is therefore described by its mean
composition vector, labeled as 55 ®in © Pout © Gh, Where o
indicates vector concatenation and

¢in = (Din, 15> in, Ny ) (1)
¢out = (¢out,1a ey ¢out,Nout) (2)
®h = (Dh,15--sPh,Ny) - (3)

The subvectors denote the input, output and hidden com-
position vectors, respectively, and the total volume fraction
of (non-solvent) species is ¢ = ZiNzlsz’- The surface
only exchanges hidden and output species with the infi-
nite reservoir. Within our framework, we don’t prescribe
any specific model of the reservoir (see SI Note 7) and as-
sume that it can maintain output and hidden species at a
constant chemical potential described by

e _ res res res res
Hres = (,Uout,la -+ s Hout, Ngyio Hh, 15 -+ - huh,Nh) : (4)

The non-dimensionalized free energy density of such a
surface is

Qsurtace = 6Vf((£a X) — Blires - <£0h (5)

where $oh = 5out05h and 8 =1/kpT is the inverse tem-
perature. The quantity [jires - (50h therefore describes the
external coupling of the output and hidden species to the
reservoir. Additionally, f is the internal free energy density
of the surface, approximated in Flory-Huggins theory as

N
Buf(d,x) = dilogei+ (1—¢r)log(1— or)
=1

(NN
+§Zz¢i>{ij¢j

i=1j=1

(6)
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Fig. 1. (A) The model is motivated by multiple cellular condensates that form on surfaces such as DNA and bilayers. Species that are localized primarily to the surface,
such as transcription factors (DNA) and membrane proteins (bilayer), are modeled as input species (black and gray). Other species, such as coactivators (DNA) or kinases
(bilayer), freely exchange between the surface and the cellular environment, or reservoir. Output species (green, pink), in particular, are freely exchanging molecules that
can drive a particular downstream function—for example, polymerases (DNA) that turn on genes or allosteric activators (bilayer) that can translocate to complete signal

transduction. Polymerases are recruited to active genes (green) and repressors to silenced genes (pink).

(B) Motivated by (A), we consider a simplified model in which

surfaces characterized by the presence of different combinations of input species recruit distinct output species from an infinite reservoir. (Left) The key parameters of the

model are the interactions x between the species and the reservoir chemical potentials fZres-

(Middle) We consider the evolution of surfaces in the well-mixed, mean-field

limit. (Right) The recruitment of distinct outputs is accomplished through forming multiple phases in the parameter space of input concentrations. The coexistence line across
which the system undergoes an abrupt phase transition functions as a decision boundary in a classification of surfaces. (Loop) We use JAX to iteratively tune x and fires With
the goal of recruiting the desired output species (based on the phase label, x vs o) for each training data point.

where y is the effective interaction matrix,

€ii T €54
Xij:ZB (fij_ i 5 ]J)

and z is the number of nearest interacting neighbors, with
€;; being the microscopic nearest-neighbor contact energy
between species ¢ and species j. Note that since y;; =0
by definition, the ¢ = j terms do not contribute to the above
equation, and further the equation assumes negligible ef-
fective solute-solvent interactions.

@)

Zentner et al.

We next write a dynamical model to probe the steady-
state composition of a surface characterized by a fixed in-
put species composition ¢i,. The volume fractions of all
non-input species evolve over time due to the exchange
with the reservoir until a steady-state is reached. We treat
these compositional dynamics as near-equilibrium relax-
ation that, to a first approximation, is driven by linear gradi-
ents of the free energy with respect to the surface’s compo-
sition (50). Here, we assume that solvent molecules have
much faster dynamics than solutes, which improves nu-



merical stability of the optimization but does not affect the
steady-state (Fig. S6). Thus, the temporal evolution of
the surface composition $oh of the exchanging output and
hidden species is written as (S| Note 1)

d(;oh dqurface - o
—— =—0D(i— 8
dt d¢0h BD(fi — fires) (8
where Sp; = 0(Bvf)/O¢on; is the intrinsic (non-
dimensionalized) chemical potential of exchanging

species i. D is the (Nout + Nn) X (Nout + Nn) mobility
matrix that sets the rate of exchange between the surface
and reservoir and is chosen, for simplicity, to be diagonal,
identical for solutes, and consistent with Fick’s law at dilute
equilibrium conditions (36) (SI Note 1). At steady state,
the surface and reservoir must have identical chemical
potentials in the non-input species but can have distinct
compositions—a feature of multiphase systems that we
aim to exploit.

Designing multiphase classifiers

With this forward model, our goal is to identify an effective
interaction matrix x and reservoir chemical potential fires
(at 8 = 1) such that, for a surface defined by a given in-
put vector ¢in, the steady state is enriched in the desired
output species and depleted in all other outputs (Fig. 1B).
This output convention is akin to “one-hot” representations
common in machine learning. To train this model, we em-
ploy a differentiable implementation of the above dynam-
ical description amenable to gradient-based optimization
methods that minimize a loss function (51).

In particular, we require that the following criteria be cap-
tured by our loss function: first, the final concentration of
the desired output species should be above some thresh-
old value ¢max = A/N, where A is a value to be speci-
fied. Second, the final concentrations of the undesired out-
put species should be below some threshold ¢min = B/N,
where B is a value to be specified. These two criteria in
turn enforce that the ratio of desired to undesired outputs
should be above a set threshold A/B, and that this ra-
tio is attained with a sufficiently enriched output species.
We choose A = 1.1 (mild enrichment above 1/N), and
B = 0.25 (significant depletion below 1/N).

We find empirically that the following loss function gives
the best performance in optimizing for these two criteria:

Mpatch

> liw (Xofiesida) (@

nb tch /)

L(X, fires)

where the sum is over npgcn data points in the training
set, data point a corresponds to a surface that reaches
steady-state concentrations ¢,, and j(a) is the index of
the desired output species for data point a. We define the
function

Nout
> log(1+Ngx) >0 (10)

k=1
(k#3)

lj (X fires) = log (1 + ij) =+

where

pj = max (07 Pmax — ¢out7j) (11)
gk = max (07¢out,k - ¢min> . (12)

The term [; is therefore at a global minimum when p; =
qr =0, and L is at a global minimum when this condition
is satisfied for all data points a.

We minimize £ with respect to x and [ies Over several
thousand training epochs using an RMSProp algorithm
from the Optax library (51, 52). Once trained, we evalu-
ate the performance of the classifier using a success cri-
terion that follows from the definition of the loss function:
given a test point a of input concentrations, the surface’s
steady-state composition must be enriched above ¢max in
the j(a)'th output and depleted below ¢mi, in all other out-
puts for the point to be considered successfully classified.
The classification success is therefore

Tiset

fZ (jw) (13)

nset

where nget = 500 is the number of points in the valida-
tion/test set and ©(z) =0 if x =0 and is 1 otherwise.

In training the system over x and fires, We impose several
constraints. First, since we are modeling liquid phases,
we require that energies be of order kT and therefore
enforce that each entry of the chi matrix has |x;;| < 15,
which is O(z). Second, since we are designing surfaces to
only enrich one particular output species, we require that
output-output interactions be repulsive, with x;; > 10 for
distinct output species i and j. Third, we enforce that all
output species have the same reservoir chemical potential
as a design criterion, which is meant to mimic the surface
choosing from outputs that are at "identical" potentials in
the reservoir. Finally, since input-input interactions and in-
put chemical potentials don’t affect steady-state behavior
in the mean-field limit, they are omitted from the model and
not treated as free design parameters.

Results

Tuned molecular networks drive linear classification

Armed with this model, we first aim to create linear clas-
sifiers. In a simple mixture comprising only 2 input and 2
output species, our target is to design surface condensates
that recruit a specific output molecule (green or pink) de-
pending on which input species is at higher concentrations
(Fig. 2A), i.e., an ultrasensitive ratiometric sensor. With
this objective in mind, we initialize a non-interacting liquid
mixture and train the molecular interactions and reservoir
potential over multiple epochs (Fig. 2B). The learned inter-
action matrix broadly matches physical intuition, with each
input preferring to mix with the cognate output and demix
from the non-cognate output. Upon testing, our model ex-
hibits a sharp switch in composition across the boundary
(Fig. 2C). This switch is consistent with a first-order phase

Zentner et al.
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Fig. 2. (A) The target linear decision boundary is shown, with each axis being the concentration of one of the input species. Green and pink denote regions where we desire
condensates enriched in the green and pink component, respectively. (B) Predictions from the trained model for different input compositions in the test set. The axes depict
the input concentrations while each dot is a test input condition, colored by the ratio of the two output species at steady-state (displayed on a log-scale). Along the solid black
line, the system undergoes a discontinuous transition in mean-field composition across the boundary, as shown in the right-most panel. (C) Evolution of training loss and
parameters over the optimization. The training parameters converge to a solution that is analytically consistent with the formation of a linear decision boundary (SI Note 3).

transition (Fig. 2C) that is characterized by a temperature-
dependent discontinuity in output recruitment (Fig. S1B).

To understand how the decision boundary emerges from
molecular parameters, we develop a simple analytical ap-
proach (Sl Note 3). We first define the decision boundary
as the manifold where all output species are recruited at
identical levels. We find that the expressivity (or repertoire
of encodable manifolds) of mixtures with 2 inputs and 2
outputs is limited to linear boundaries, and this theoretical
prediction is supported by simulation (Fig. S2A, S| Note
3). More generally, we show that liquids with input and
output species can only typically encode linear decision
boundaries in input space (S| Note 3). Consistent with this
prediction, we find that our model still sharply classifies
higher-dimensional linear manifolds (Fig. S2B).

To test our model’s prediction that purely input-output mix-
tures cannot classify nonlinear boundaries, we train a 2
input and 2 output mixture to separate an elementary non-
linear manifold: an upper quadrant AND-like distribution,
in which one output is recruited only when both inputs are
present at high concentrations; otherwise, the other out-
put is recruited. After training, we find that input-output
mixtures fail to encode this nonlinear decision boundary,
instead showing a best-fit linear approximation (Fig. S4).

Zentner et al.

Hidden species expand capacity for nonlinear com-
plex decisions

The inability to form nonlinear decision boundaries with
simple input-output networks motivates the introduction of
hidden species. In our model, hidden species are similar to
output species in that they can interact with all molecules
and be recruited to surfaces from the reservoir, thereby
influencing the steady-state condensate that forms. How-
ever, their steady-state concentrations are taken to be ir-
relevant in performing the classification of the surface; they
therefore play a role analogous to that of hidden nodes in
a neural network (53).

We explore how adding hidden species to our model could
enhance classification (Fig. 3A). Extending our analyti-
cal approach, we find that the addition of a single hidden
species offers enough flexibility to encode decision bound-
aries of varying curvatures (Fig. S2C, Sl Note 3). We thus
explore classification of complex, high-dimensional deci-
sion boundaries by including multiple hidden species.

First, we demonstrate the effectiveness of hidden species
by programming an AND-like upper quadrant decision
boundary with two additional hidden species (gold and
cyan in Fig. 3B). Analyzing the trained molecular network
reveals a complex interplay of interactions that leads to es-
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sentially binary responses in the output species recruited
to the surface (Fig. 3C, Fig. S4). Like the linear clas-
sifier, and consistent with a phase transition, our trained
AND system exhibits a sharp switch in composition across
the decision boundary (Fig. 3C). With the addition of
more hidden species, the model can encode increasingly
nonlinear decision boundaries such as XOR, circle, sinu-
soidal, and checkerboard patterns (Fig. 3D). Similar to the
AND boundary, each of these systems exhibit sharp, near-
discontinuous switches in the recruited species across the
boundary (Fig. S5). The trained parameters for each deci-
sion boundary are shown in Fig. S7.

Hidden species expand capacity by encoding multiple
modular, encrypted phases

To understand how hidden species enhance expressiv-
ity, we trained mixtures with varying numbers of hidden

species to solve a range of decision boundaries, and eval-
uated the classification success (as defined in eq. 13).
We find that the addition of hidden species improves clas-
sification but saturates beyond a decision-boundary spe-
cific threshold (Fig. 4A, left). While surface condensates
correctly enrich the pertinent output, we find that surfaces
with the same output molecules often recruit varying con-
centrations of hidden species. To better understand this,
we estimated how many distinct phases were formed as
defined by the overall composition of hidden and output
species on surfaces. Collecting the compositions across
multiple surfaces (nget test points into a matrix of size
nset X (Nout + Nn)), we perform principal component anal-
ysis and use a Marchenko-Pastur (54) based threshold to
estimate the number of distinct phases from the significant
eigenmodes. We then perform hierarchical clustering to
identify the average composition of each phase (see Sl

Zentner et al.
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Note 5). We find that the number of steady-state phases
with distinct compositions grows with hidden species (Fig.
4A, right). This suggests that encoding multiple phases
plays an important role in improving expressivity of multi-
component condensates.

To explore this deeper, we consider the trained XOR liquid
with 6 hidden species (Fig. 4B). Compositional analysis re-
veals that the XOR decision boundary is achieved through
4 distinct phases. For example, areas with high output 1
(green output) are encoded by 2 distinct phases (e.g., red
and yellow phases, or Ph2 and Ph4) that recruit different
hidden species but the same output species. Identifying
each point with an independent surface, our model shows
that multiple surfaces that condense the same output re-
cruit distinct hidden species, and thus vary in phase com-
position. Biologically, such a solution might look like con-
densates that drive gene activation at different DNA loci by
recruiting high concentrations of the functional polymerase
but varying concentrations of coactivator molecules. Thus,
the encoding of multiple encrypted phases, which differ in
hidden species but recruit similar output molecules, is the
primary mechanism by which hidden species improve ex-
pressivity.

In the XOR liquid, we find that the 4 distinct encrypted

Zentner et al.

phases modularly partition the input space into quadrants,
such that groups of related inputs drive condensation of
a particular phase. When we extend this analysis to other
nonlinear decision boundaries, we find that hidden species
generally learn modular representations of related input
surfaces (Figs S8-S12). We next explore whether we can
repurpose this modular multiphase representation learned
by hidden species for other tasks.

Changing reservoir composition of hidden-species
drives solution of new classification tasks

Motivated by the modularity of encoded phases, we hy-
pothesized that once trained with sufficient hidden species,
the same molecular ensembles could be adapted to solve
new decision tasks by simply tuning the reservoir of hid-
den species without changing interactions. This idea is
analogous to machine-learning architectures comprising
modules where an upstream (typically randomly-wired)
network remains fixed and solutions to new tasks are
achieved by training only the parameters of a small down-
stream network (55, 56). To demonstrate this idea, we
revisit the trained XOR liquid and ask whether it can be re-
purposed to solve AND or OR decision boundaries only by
changing reservoir composition. We find that changing the
potential of a few key hidden species is sufficient to fine-
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tune the same molecular mixture to perform distinct tasks
(Fig. 5A).

Given this finding, we next explored whether liquids with-
out designed interactions, e.g., with randomly chosen
molecular interactions x;;, could nevertheless be trained
to classify surfaces through fine-tuning the reservoir alone.
To test this, we generated liquids with 2 inputs, 2 out-
puts, and a large number of hidden species (N, = 30,
Sl Note 6). The interactions between species were sam-
pled from a near-uniform distribution such that |;;| < 12;
for a fixed decision boundary, we report the distribution of
model performance over n = 30 different interaction net-

works (S| Note 6). Through training only the reservoir
makeup, we show that liquids with randomly chosen and
fixed interactions x contain the ability to model both linear
and nonlinear decision boundaries, albeit with decreasing
performance as we increase the complexity of the decision
boundaries that we seek to approximate (Fig. 5B).

Our results suggest that rather than constantly redesign-
ing or evolving new interactions, the physics of surface
condensation provides a flexible mechanism to redeploy
the same molecular repertoire to solve new tasks by ad-
justing compositions of the reservoir. An analogous idea
has been explored previously by Elowitz and coauthors in

Zentner et al.
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the context of BMP signaling and dimerization networks
(4, 57) where they show that tuning stoichiometries but not
binding affinities in dilute molecular ensembles can facili-
tate solving distinct tasks. Together, this highlights that the
physics embedded in collective molecular networks per-
mits flexible computations at distinct hierarchies.

Surface condensates

datasets

classify high-dimensional

Our motivation for physically embedded computation in
phase separation is to process chemical stimuli in cells
through concentration-dependent condensation, not to
build a general-purpose classifier for arbitrary domains
(e.g., distinguishing cat vs. dog images). In the same
spirit, related work has evaluated physical systems as
classifiers of physical stimuli in many domains (58), rang-
ing from molecular concentrations to mechanical forces
(59, 60). Molecular examples include winner-take-all
reaction networks (61), self-assembly with Hebbian-like
interactions (8, 10), and multicomponent liquids (40, 41).
Nevertheless, to evaluate expressivity of these physical
systems on high-dimensional inputs in a standardized way,
we follow this literature and use symbolic ML datasets as
benchmarks, not as an end in themselves: each feature is
reinterpreted as a molecular concentration and presented
to the system as a physical stimulus.

We start by classifying the near-linear Seaborn Iris
dataset, which comprises 4 analog flower features (petal
and sepal length and width) and 3 output labels (flower
species). The value of the j’th feature z,; of the a’th data
point z, is encoded as an input concentration according to

the linear, scaled mapping ¢q; = ¢° ( Taj Ml Taj )

maxg Tq;j —ming Tqj
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where min, ,; and max, x,; denote the minimum and
maximum z,; across all data points a, respectively, and
#° =0.5/4 = 0.125, such that the input species can occupy
a maximum of half of the volume. We incorporate 1 out-
put species per label to mimic a species-specific molecule.
Once trained, we demonstrate that this 7-component mix-
ture can directly classify the IRIS dataset without the use
of hidden nodes (Fig. S13).

Next, we turn to the higher-dimensional MNIST dataset, a
collection of labeled hand-drawn images of digits, to study
how our model generalizes to larger interaction networks.
We first coarse-grain each grayscale image from 28 x 28
to 7 x 7 by averaging pixel values in a 4 x 4 block and as-
sign each pixel in the reduced image to an input species.
Then, we map the volume fraction ¢, ; of an input species
to its corresponding pixel value (z;) by ¢in; = ¢°(z:/255),
where ¢° = 0.5/49 ~ 0.01. We train the mixture to initially
discriminate between two digits, achieving strong perfor-
mance with just a few hidden nodes (~2-3). However,
digits that are traditionally harder to distinguish (Fig. 6B,
red, 3 vs 5) reached lower performance levels compared to
easier ones (Fig. 6B, blue, 0 vs 1). Extending the model to
simultaneously classify all ten digits requires more hidden
nodes (~ 15) and saturating performance is lower (Fig. 6B,
black). As we relax the classification stringency by requir-
ing lower and lower excess of the desired output species
over the undesired ones without retraining the system (Fig.
6B inset), the success in classifying MNIST increases from
~ 75% to a saturating test success of ~ 85%. The confu-
sion matrices for each of these three cases is shown in
(Fig S13). More generally, the ability to design conden-
sates with large numbers of species for high-dimensional



capacity is improved with hidden nodes but typically satu-
rates.

These results are generally consistent with recent findings
from (41), where the authors develop a 3D lattice conden-
sate model and train it with a probabilistic learning algo-
rithm derived from classical Boltzmann machines to clas-
sify MNIST digits with ~ 75% accuracy. Their lattice liquid
with a “semipermeable membrane” is conceptually equiv-
alent to our approximation of “surface-localized inputs”.
In (10), which explores crystalline self-limited assembly,
MNIST digit classification is similarly demonstrated in a
theoretical model with ~ 85 —90% accuracy depending on
the design constraints. Together, these results highlight
the potential of multicomponent interacting mixtures to ef-
fectively classify high-dimensional decision boundaries de-
spite the different choices in microscopic physics, training
algorithms, design constraints, and problem encodings.

Mean-field solutions translate to successful classi-
fiers in 3D lattice liquids

We next aim to understand whether the mean-field de-
sign of liquids transfers to a more detailed 3D model that
explicitly captures spatial correlations. Following earlier
work (31, 41, 62), we adopt a lattice liquid formulation in
which we treat a surface as a lattice of length L x L x L
with 1 molecule per site. Interactions between 18 near-
est neighbors, i.e., those within a /2 lattice distance, con-
tribute to the overall energy of the system, which thus de-
pends on the spatial configuration of molecules (SI Note
4). To mimic our mean-field treatment of surface-localized
and well-mixed input species, we fixed their counts and
positions on the lattice, thereby treating them as immo-
bile and non-exchanging in the canonical ensemble (Fig.
7A). Output and hidden species are allowed to exchange
with the reservoir at a fixed chemical potential, i.e., in the
grand-canonical ensemble. Finally, we sample this mixed-
ensemble model through parallelized Monte-Carlo simu-
lations to ensure sufficiently equilibrated thermodynamic
properties and compositions (S| Note 4, Fig. S14B).

Unlike (41), we do not train molecular parameters using
this lattice liquid; instead, we simulate the lattice liquid with
trained parameters from the mean-field model and evalu-
ate it's ability to classify surfaces. The designed mean-
field interactions are rescaled to account for the number of
nearest-neighbors to parameterize this lattice liquid. We
find empirically that decreasing temperature (or increas-
ing 3) sharpens the decision boundary in the lattice model
(Fig. S14A), and all test data shown is at 3 =2 in Fig. 7.

Using liquids trained on a range of decision boundaries
reported in Figs 2-3, we parameterize and sample the
equilibrium configurations of the 3D lattices. Overall, we
find that lattice liquids broadly encode similar classification
boundaries as their mean-field counterparts (Fig. 7B) with
a few key differences. Near the decision manifolds, we
find that lattice liquids exhibit more continuous variation
unlike the abrupt jumps in mean-field liquids - likely aris-

ing from coexisting but spatially isolated pockets of both
output species. Away from the boundary, output species
ratios still reach 10 — 100x ratios of correct over incor-
rect species (see Fig. S15). Finally, we find that as the
decision boundary increases in complexity , and thus re-
quires more hidden species, the asymptotic classification
success in the 3D liquid typically decreases (Fig. 7B, Fig
S14A). Together, the broad concordance between mean-
field and 3D lattice liquids supports the generality of our
results and motivates direct avenues for experimental test-

ing.
Discussion

Across the tree of life, biomolecules in cells can self-
organize into membraneless organelles called conden-
sates that regulate biological pathways. Motivated by this
fact, we explore the computational capabilities that are em-
bedded in and arise from the physical processes shap-
ing condensation in multicomponent mixtures. We find
that multicomponent liquids can recruit distinct molecules
(and thus condensates) to surfaces that differ only subtly
in their composition of surface-resident “input” molecules.
This high-dimensional surface classification is offered as a
model of how cells might assemble transcriptionally active
condensates at certain genetic loci (with a particular com-
bination of DNA-bound transcription factors) but repressive
ones at other DNA surfaces (with a different combination
of transcription factors). Together, our work suggests that
emergent condensation in multicomponent liquids like the
cellular milieu can drive computations and information pro-
cessing that may be necessary for regulating complex bio-
logical functions.

We show that inclusion of hidden species—molecules
that shape condensation but do not drive downstream
function—expands expressivity (63), i.e., the ability to en-
code increasingly complex classification boundaries. We
find that hidden species improve expressivity through en-
coding novel phases that differ in composition of hid-
den molecules but still recruit the same functional output
species. The role of such species could be played by dif-
ferent coactivators that recruit the same polymerases to
drive gene activity (64), varying co-receptors and adap-
tor proteins that recruit the same downstream kinase to
membranes to propagate signaling cascades (26), and
more generally by regulatory molecular cascades. In addi-
tion, hidden species simultaneously facilitate adaptability
by allowing reuse of the same molecular interaction net-
works, including even purely random ones , to perform dis-
tinct tasks (Fig. 5A-B) simply by changing makeup of the
cellular milieu. This adaptability loosely mimics cell-type
specific expression, in which cellular compositions can
use the same genetically-encoded molecular ensemble to
drive different gene programs with the same functional
molecular output species—a feature that emerges in other
multicomponent biomolecular networks (4, 65, 66). More
generally, the features of multicomponent phase separa-
tion naturally provide cells with regulatory knobs such as
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changing composition (by expression) or interactions (by
post-translational modifications) to leverage condensate-
mediated computations. Finally, our results emphasize
an expanded view of biological condensates through the
“hidden-output” axis: since condensates in vivo are typi-
cally characterized by visualizing only a subset of hidden
and/or output species, it is possible that (a) condensates
that appear similar (by hidden species) could carry out dis-
tinct functions (by recruiting distinct output species that are
not visualized), and vice versa (b) condensates that ap-
pear distinct (by hidden species) could still perform similar
functions (by recruiting similar output species that are not
visualized).

We show that increasing hidden species generally im-
proves the precision of classification but eventually sat-
urates. In principle, the physics underlying our multi-
component surface condensation model is flexible enough
to universally approximate arbitrary decision boundaries
through scaling the number of hidden nodes (SI Note 3,
Fig. S3), but physical and/or numerical factors, such as
those described below and in Sl Note 3, are likely to con-
strain this flexibility. For example, the saturation in preci-
sion we observe could arise from a limitation in our opti-
mization formulation, including in our choice of loss func-
tion or parameter constraints, that may make it difficult to
find global minima of the loss landscape. Second, the sat-
uration could point to a more fundamental limit that arises
from two competing physical constraints in our model:
(a) with more species, there is an overall dilution that in-
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creases the entropic cost of condensation, and (b) the re-
quirement of liquid-like condensates, i.e., energy scales of
order kT, limits the enthalpic stabilization that is possi-
ble to encode in our simple model of pairwise interactions.
While not captured in our simple thermodynamic model,
biology points to the need for more complex models that
may expand the scope of computations possible through
condensation—including through leveraging higher-order
interactions such as discrete sticker-spacers or excluded-
volume interactions that expand capacity of the underlying
free-energy landscape (17, 67, 68), multimerization do-
mains that function as sinks to reduce entropic costs of
demixing (69), and more generally, out-of-equilibrium re-
action cascades that provide additional axes for tunable
multiphase behavior.

The balance of entropy-energy trade-offs direct surfaces
with differing input compositions to recruit distinct conden-
sates and behave as a classifier. Our model has partial
parallels to well-known architectures in inference—for ex-
ample, the free energy governing phase behavior in our
model resembles that of a Hopfield network (70). Our
model more closely resembles Boltzmann machines (53)
in that we exploit hidden species to encode more com-
plex stimuli-response behaviors, i.e., higher expressivity
(49, 71). While we focus on classification, emerging stud-
ies argue for broader computational capabilities embed-
ded in multicomponent liquids. For example, (40) ex-
plore the capacity of condensates to store and retrieve
patterns as stable phases (or memories) analogous to



Hopfield models trained with the Hebbian rule. More re-
cently, (41) use a simple wake-sleep learning algorithm,
based on competition between Hebbian learning and anti-
Hebbian unlearning as in classical Boltzmann machines
(53), to train molecular parameters of 3D lattice liquids to
form complex spatial architectures and to perform general
probabilistic inference, including for MNIST digit classifi-
cation. Further, our work finds that MNIST classification
saturates (~ 85%)—potentially hinting at limitations in the
physics of condensation and/or in the choice of data en-
coding/representation. More generally, it would be valu-
able to delineate and contrast the principles and limits of
computations performed by different physical systems with
and in addition to condensation—for example, dimeriza-
tion networks (4), self-assembly (8—10, 72), mechanical
systems (73, 74), and stochastic biomolecular reactions
(75-77).

We characterize the computational capabilities of pro-
grammed multiphase fluids that are trained through
gradient-descent based global optimization routines.
While we focus on classifier function, the ways by which
molecular networks can learn, potentially autonomously,
or be trained represents an important area for investiga-
tion. For instance, (41) use sleep-wake training rules that
are spatially local to train lattice liquids. In conjunction
with other recent studies, these suggest that molecular
networks can be trained in situ through physical learn-
ing rules that directly modify parameters like interactions
or composition (41, 58, 78, 79). In particular, we show
that only changing levels of hidden and output species in
the reservoir—a variable amenable to modification in liv-
ing systems—of trained fluids enables adaptation to new
tasks (Fig. 5A). If the levels of reservoir species could
be directly regulated by condensate formation—for exam-
ple through engineered genetic feedback circuits where
condensation of output species alters gene expression of
reservoir species—this would permit learning over longer
time-scales. Together, these hint at biologically plausi-
ble mechanisms for autonomous and continual learning in
biomolecular fluids without any electrical computers in the
loop.

Finally, we demonstrate concordance of our mean-field
designs with function in a 3D lattice model that explicitly
captures spatial correlations that are relevant in vitro—
motivating opportunities for experimental testing and re-
finement. Promising avenues include (a) designed DNA
(10, 42, 80) molecules, along with surface-functionalized
or immobilized DNA strands, and (b) emerging synthetic
biology approaches (81-84) that combine genetic re-
porter systems with coexpression of phase-separation pro-
teins. More generally, the confluence of machine-learning,
physics-based models, and multiplexed experimental tech-
niques will inform future opportunities to dissect as well as
design biological computation through condensation.

Limitations of the study
In this paper, we explore how the emergent physics under-

lying condensation in multicomponent liquids can classify
surfaces with distinct compositions. Towards this, we intro-
duce a simple mean-field description of liquids comprising
molecules of identical size with pairwise interactions. As a
consequence, we are unable to explore the computational
capacity and constraints that are afforded through explicit
consideration of complex molecules - including effects of
polydispersity, higher-order interactions, and anisotropic
molecular architectures that all typify biomolecules. We
focus on mean-field surface condensation from a large (in-
finite) cellular reservoir that we posit maintains any learned
chemical potential. Thus, a limitation of the model is that
molecules are maintained at well-mixed compositions in-
side the surface and intra-surface demixing is not explic-
itly studied. Thus, further studies are required to explicitly
study the effects of finite copy numbers, surface-surface
competition, and dynamics of nucleation. Since our model
does not explicitly specify the mechanisms by which the
reservoir can be maintained, either in biological or phys-
ical systems, new models that explicitly consider specific
reservoir models will provide insights on how to realize
them.
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