
nature computational science

https://doi.org/10.1038/s43588-025-00881-yArticle

Generalized design of sequence–ensemble–
function relationships for intrinsically
disordered proteins

In the format provided by the
authors and unedited

Supplementary information

https://doi.org/10.1038/s43588-025-00881-y

A Stochastic Gradient Estimation

Supplementary Information: Generalized design of1

sequence-ensemble-function relationships for intrinsically disordered proteins2

Supplementary Section 1: Stochastic Gradient Estimators for Dynamical Systems3

In this work, we employ trajectory reweighting for low-variance gradient estimation through simulations. Here we provide4

details on traditional stochastic gradient estimation for dynamical systems.5

A Stochastic Gradient Estimation6

The problem of computing the gradient of an expectation of a function with respect to parameters defining the distribution7

that is integrated is well-studied in machine learning (see (1) for a complete review). Consider an objective F of the form8

F(θ) :=
∫

p(x;θ)f(x;θ)dx = Ep(x;θ)[f(x;θ)] (1)

One is typically concerned with finding extrema of F , making its gradient of interest:9

∇θF(θ) = ∇θ

[∫
p(x;θ)f(x;θ)dx

]
(2)

=
∫

p(x;θ)∇θf(x;θ)dx+
∫

∇θp(x;θ)f(x;θ)dx (3)

=
∫

p(x;θ)∇θf(x;θ)dx+
∫

p(x;θ)∇θ log(p(x;θ))f(x;θ)dx (4)

= Ep(x;θ)[∇θf(x;θ)]+Ep(x;θ)[∇θ log(p(x;θ))f(x;θ)] (5)

In traditional supervised learning, batches are uniformly subjected to backpropagation so ∇ log(p(x;θ)) = 0 and10

∇θF(θ) = Ep(x;θ)[∇θf(x;θ)].11

Conversely, in reinforcement learning, the distribution p(x;θ) (defined by the policy) explicitly depends on θ but the reward12

for a given state f(x;θ) typically does not. One solution to this is to reparameterize the source of the stochasticity.13

Under the pathwise gradient estimator, rather than generating samples from the distribution p(x;θ), samples are first14

generated from a distribution p(ε) that is independent of θ and only then are these generated samples are transformed15

via a deterministic path g(ϵ,θ). Like the case of supervised learning, the reward now explicitly depends on θ (via the16

sampling process) and our distribution does not depend on θ (i.e. ∇θp(ε) = 0). So, the gradient calculation acts directly17

on the sequence of operations that are applied to sources of randomness to yield the objective function:18

∇θF(θ) = Ep(ε)[∇θf(g(ε,θ))] (6)

In reinforcement learning, this is referred to as the reparameterization trick.19

There is a second, alternative gradient estimator in reinforcement learning that does not differentiate through the sampling20

procedure itself but only requires that the probability of sampling each state is differentiable. Traditionally, the probability21

of each state is represented as the joint probability of each individual step (as determined by the policy) in the trajec-22

tory that yielded a given state. Under this score-function gradient estimator, one deals instead with the second term in23

Supplementary Equation 5:24

∇θF(θ) = Ep(x;θ)[∇θ log(p(x;θ))f(x;θ)] (7)

This estimator is referred to as the REINFORCE algorithm in the reinforcement learning community. Intuitively, it provides25

signal to increase the probability of high reward states and decrease the probability of low reward states.26

B Differentiable Molecular Dynamics27

In traditional molecular dynamics simulations, a system of n interacting bodies, typically represented by a vector −→x ∈ R6n
28

representing their positions and momenta, is iteratively propagated through time via a step function S:29

−→x t+1 = S(−→x t,θ)

where s depends on the energy function and numerical integration scheme and θ are control variables. For some fixed30

time N , we can represent the final state −→x N as a single function31

T (−→x 0) = S(· · ·S(S(−→x 0)) · · ·) = −→x N (8)

Supp. Fig. 1. Benchmarking a differentiable implementation of the Mpipi force field
A. A comparison of simulation times for a sequence of length n = 50 between forward simulations with discrete and continuous
sequence representations, and a gradient calculation directly through the unrolled simulation with the continuous sequence. Each
simulation consists of 50,000 timesteps of a Langevin integrator. No neighbor lists are used, i.e. nonbonded interactions are computed
between all particle pairs.
B. A comparison of the typical forward simulations seen in A. for continuous sequences of varying lengths.
C. Scaling of the mean absolute value of the gradient (on a log scale) as a function of simulation length.
D. An optimization trajectory using gradients computed directly through the unrolled simulation of predicted Rg versus epochs.

where S is applied N times and −→x 0 represents the initial state. Thus, a MD trajectory can be considered the result of a32

single numerical calculation.33

When written in an automatic differentiation framework, gradients can be computed efficiently with respect to this calcula-34

tion. Consider some objective function defined with respect to the final state and some control parameters θ, O(−→x N ,θ).35

Since MD trajectories are stochastic, one is typically interested in the expectation of this objective function,36

⟨O(−→x N ,θ)⟩ρ∈R = ⟨O(T (−→x 0),θ)⟩ρ∈R (9)

= 1
|R|

∑
ρ∈R

O(Tρ(−→x 0),θ) (10)

where R is a set of random seeds for initializing trajectories and −→x N,ρ is the final state resulting from seed ρ ∈ R.37

Therefore, in the language of stochastic gradient estimators, gradients are typically computed via the reparameterization38

trick (c.f. (2)):39

∇θE [O(−→x N ,θ)]ρ∈R ≈ ⟨∇θO(Tρ(−→x 0),θ)⟩ρ∈R (11)

B Differentiable Molecular Dynamics

A B

C D

Supp. Fig. 2. Sampling sufficiently representative reference ensembles
A. The simulation temperature for 10 independent simulations involving 10,000 equilibration steps and 250,000 simulation steps,
sampling reference states every 1,000 steps. These simulation parameters are used to sample reference states when designing
sequences of length n = 50 for a target Rg in Figure 2.
B. Distributions of sampled Rg values for a range of simulation lengths (full simulation includes 2500 reference states).
C. The running average of the Rg across the entire reference ensemble.
D. Distributions of all pairwise RMSDs between sampled reference states for a range of simulation lengths. For each unique pair of
reference states, the RMSD is computed via the Kabsch algorithm (4), which finds the optimal rotation that minimizes RMSD between
two point sets using singular value decomposition (SVD) of their covariance matrix.

Note that (i) objective functions can also be defined with respect to the entire trajectory itself rather than only the final40

state and (ii) in the case of equilibrium systems, one long simulation with states sampled at sufficiently long time intervals41

can be interpreted as a set of individual trajectories under standard assumptions of ergodicity, but we retain the current42

formalism for clarity.43

Since gradients must be computed with respect to the simulation procedure itself, prohibitive numerical and memory44

limitations arise. In (3), Metz et al. derived the analytical gradient for a single term in Supplementary Equation 11:45

dON

dθ
= ∂ON

∂θ
+

N∑
k=1

∂ON

∂−→xN

(
N∏

i=k

∂−→xi

∂−→x i−1

)
∂−→xk

∂θ
(12)

where ON represents the objective function evaluated at the final state. Importantly, the matrix of partial derivatives46

∂−→xi
∂−→x i−1

is the Jacobian of the dynamical system. Only when the magnitude of all eigenvalues of this Jacobian are less47

than one will the resulting product be well-behaved; otherwise, the product will diverge. Moreover, as MD trajectories48

often require very large numbers of steps, the memory required to compute Supplementary Equation 12 can often far49

exceed the limitations of state of the art GPUs.50

51

Supplementary Section 2: Benchmarking52

Our method requires that we simulate a probabilistic sequence π rather than a discrete sequence. For a pairwise energy53

function, this requires an energy calculation that is O(202n2) rather than O(n2). In Supplementary Figure 1A, we show54

that this incurs only a modest computational cost for a system of size n = 50 on state-of-the-art GPUs. We find an55

increased computational cost on CPU, likely due to decreased parallelism and therefore dominance of the 202 constant56

factor. Given current limitations of JAX-MD, we do not use neighbor lists in this work but the efficient usage of neighbor57

lists should permit the scaling of this relationship to arbitrarily longer sequences. Even without such optimizations, we find58

that typical forward calculations only show a modest, near-linear dependence of simulation time with increasing sequence59

length as seen in Supplementary Figure 1B.60

Traditional differentiable MD requires the calculation of gradients through the unrolled trajectory. In Supplementary Fig-61

ure 1A, we also shows how such a gradient calculation imposes a substantial time overhead to the otherwise forward62

simulation. Moreover, this gradient calculation is unstable as gradients explode with increasing numbers of timesteps63

(Supplementary Figure 1C). These gradients cannot be used for optimization even in the context of a simplified version of64

the most basic design problem considered in this work, i.e. designing a sequence with a target Rg without annealing the65

entropy of the probabilistic sequence (Supplementary Figure 1D).66

Supplementary Section 3: Rg Optimizations67

In Figures 2 and 4, we report sequence optimizations for target Rg values. This requires a definition of Rg for a probabilistic68

sequence. In the context of IDPs, the Rg is defined as the root mean square distance of particles from the center of mass,69

R2
g = 1

n

n∑
i=1

r2
i (13)

where r2
i denotes the squared distance of the ith particle to the center of mass. While the particle positions are indepen-70

dent of the particle identities, the center of mass is not as in general the mass of a particle depends on its residue type.71

Consider a force field that assigns masses −→m to each residue where −→mj is the mass of the jth residue and |−→m| = 20.72

Given a probabilistic sequence π, we define the mass of the ith residue as πi ·−→mi where · denotes the dot product. For a73

sequence of length n, we can then define the center of mass as74

−→x COM =
∑n

i=1(πi ·−→mi)−→x i∑n
i=1 πi ·−→mi

(14)

where −→x i denotes the position of the ith particle.75

Since Rg is defined for a single state, the Rg values reported in Figures 2 and 4 are expected values over a trajectory, i.e.76

Rsim
g = E[Rg(−→x)]−→x ∼p(·;π). For optimization, we define the loss as L(π) = RMSE(Rsim

g ,R
target
g) where R

target
g is the target77

value.78

For the optimization in Figure 2B, reference ensembles were generated from 10 independent simulations consisting of79

100 ps of equilibration and 2.5 ns of simulation, with snapshots sampled every 10 ps. We performed 50 iterations of80

gradient descent with a learning rate of 0.1. For the optimizations in Figure 2D-E, we used (i) 15 independent simulations81

rather than 10, (ii) simulation lengths of 5 ns rather than 2.5 ns, and (iii) 100 iterations of gradient descent rather than 50.82

Individual optimized sequences were validated via a more expensive calculation, consisting of 15 independent simulations83

each with 5 ns of equilibration and 50 ns of simulation, with a sample frequency of 100 ps.84

In Figure 2, we also compare the simulated Rg to the average Rg of discrete sequences as predicted by ALBATROSS.85

ALBATROSS is a model developed by Lotthammer et al. that is trained on Mpipi simulations to predict single-molecule86

properties such as Rg and Ree (5). Given a probabilistic sequence π ∈ Rn×20 (i.e. the parameter of a product of87

categorical distributions), discrete sequences can be sampled according to Equation 3 by independently sampling residue88

identities at each position. To compute
∑

−→s ∈S p(−→s |π)O−→s (with O−→s = E [O(−→x)]−→x ∼p(·;−→s)) via ALBATROSS, we sample89

1000 discrete sequences and compute the average Rg as predicted by ALBATROSS. We find that 1000 samples yields90

a converged average. We access ALBATROSS via the sparrow package made available at the following link: https:91

//github.com/idptools/sparrow.92

Since our optimization framework relies on sampling a sufficiently representative ensemble, we also sought to evaluate the93

quality of our sampled ensemble. Using the simulation parameters for the n = 50 optimizations, we evaluated four metrics:94

temperature convergence, distribution of sampled Rg values, running average of Rg, and the pairwise RMSDs between95

all sampled states (Supplementary Figure 2). First, we find that post-equilibration, the temperature fluctuates around96

the target simulation value in accordance with NVT sampling (Supplementary Figure 2A). Second, we observe a broad,97

converged distribution of sampled Rg values as well as a relatively stable running average (Supplementary Figure 2B-C).98

It is important to note that the computed average must not be perfectly converged for stable optimization as optimization99

operates at the level of individual microstates, increasing and decreasing the probability of individual configurations,100

https://github.com/idptools/sparrow
https://github.com/idptools/sparrow
https://github.com/idptools/sparrow

B Differentiable Molecular Dynamics

Supp. Fig. 3. Flexibility of inverse design framework
A. An explicit comparison of simulation predicted Rg (in Figure 2A) to ALBATROSS, a neural network trained on the Mpipi-GG force
field to predict Rg from sequence, over time. The black curve represents the Rg from the simulated probabilistic sequence and the
green curve represents the averageRg of discrete sequences sampled from the distribution of sequences defined by the probabilistic
sequence as predicted by ALBATROSS. Highlighted points (in pink) represent the start, mid-point, and end of the optimization trajectory.
B. The evolution of the probabilistic sequence throughout the optimization depicted in (A) for each highlighted trajectory point shown
through a WebLogo-style plot where height of the amino acid letter is proportional to its relative probability. On the right panel, the
probability distribution of Rg values across the conformational ensemble is shown.
C. The Rg of the simulated probabilistic sequence versus epochs for ten trajectories initialized with random keys (gray lines) but with
the same target Rg = 20 Å and the black line represents the average profile.
D. The left panel represents the composition of each of the 10 optimized sequences that were obtained from different random keys
(x-axis) and the height of the bar is proportional to the frequency at which a particular residue appears in the sequence. To the right,
the final sequences are listed.

n Target Rg Simulated Rg ALBATROSS Rg

50 32.5 32.4 28.5
75 42.5 41.3 39.0
75 45 43.4 37.8
75 47.5 46.1 39.7
75 50 48.6 39.0

Supp. Table 1. Rg optimizations for which ALBATROSS underpredicts the simulated Rg .

rather than the computed average. We validate all optimizations with substantially longer simulations in which case we101

observe high-resolution convergence in the average Rg. Third, upon computing all pairwise RMSDs between sampled102

states, we observe a converged distribution indicating broad diversity between samples, with an average pairwise RMSD103

of 17.6Å (Supplementary Figure 2D). Beyond these summary statistics under the simulation parameters for optimization,104

the convergence of our optimizations and the subsequent validation with relatively expensive forward simulations validates105

the quality of the gradient signal enabled by these ensembles.106

Supplementary Section 4: Ree Optimizations107

In Figure 2, we also report sequences optimized for target values of Ree. Unlike Rg, Ree is only a function of particle108

positions and therefore has the same definition for a continuous sequence as for a discrete sequence. Specifically, for a109

sequence of length n, Ree is defined as simply the distance between the first and last particles:110

Ree = d(−→x 1,−→x n) (15)

where d denotes the Euclidean distance. The loss is defined similarly as in the case of Rg, i.e. L(π) = RMSE(Rsim
ee ,R

target
ee)111

where R
target
ee is the target value and Rsim

ee = E[Ree(−→x)]−→x ∼p(·;π).112

Both the collection of reference ensembles throughout optimization and the validation of designed sequences were per-113

formed using the same simulation parameters as the Rg optimizations in Figure 2D-E.114

Supplementary Section 5: Cross-Validation with Alternative Force Fields115

When designing sequences with target values of Rg and Ree, we used two different underlying force fields, i.e. Mpipi and116

HPS. One natural question is the extent to which solutions under one force field generalize to alternative force fields. Note117

that since each force-field typically incorporates different biophysical/statistical priors, exact agreement is not expected.118

First, as a simple test, we correlated the simulated Rgs under both HPS and Mpipi for all sequences of length n = 50 de-119

signed for target Rg values under both force fields. We find broad agreement between the two force fields, with a stronger120

correlation arising from the solutions designed under HPS (Supplementary Figure 4A). One candidate explanation for121

the decreased correlation when evaluating sequences designed under Mpipi is that Mpipi models more complex physical122

interactions (for instance, π-π interactions), and therefore solutions that rely on such physics may not correlate with HPS.123

Next, we sought to evaluate the extent to which sequences designed with respect to a coarse-grained model agree with124

fine-grained, all-atom simulations. We use the GB99dms all-atom force field developed by Greener, which combines125

the a99SB-disp protein force field with the GBNeck2 implicit solvent model and was fit using differentiable molecular126

simulation to better capture the behavior of IDPs (6). Estimates of Rg and Ree were obtained via 3 independent 100 ns127

simulations with 0.5 ns equilibration time and configurations sampled every 0.5 ns. We used a Langevin integrator (i.e.128

LangevinMiddle in OpenMM version ≥ 8.0.0 with a step size of 2 fs. Initial conformations were obtained from the129

ESM Metagenomic Atlas (7). We correlate the simulated Rgs and Rees of sequences designed with respect to Mpipi with130

the simulated values using GB99dms. We find broad agreement between the two force fields, with increased correlation131

between Ree compared to Rg values (Supplementary Figure 4B-C).132

A B C

Supp. Fig. 4. Evaluating solutions designed with Mpipi and HPS with alternative force fields.
A. Correlations between simulated Mpipi and HPS Rg values across all sequences designed with respect to both force fields.
B. Correlation between Mpipi and GB99dms all-atom Rg values across n = 50 and n = 75 sequences designed with respect to Mpipi.
C. Correlation between Mpipi and GB99dms all-atom Ree values across n = 50 and n = 75 sequences designed with respect to Mpipi.

Supplementary Section 6: Loop and Linker Optimizations133

In Figures 3C.I-II, we present the optimizations of loops and linkers – IDPs for which Rg >> Ree√
6 and Ree√

6 >> Rg,134

respectively. For a given probabilistic sequence π, we define the loss functions as135

Lloop(π) = Rsim
ee√
6

−Rsim
g (16)

and136

Llinker(π) = Rsim
g − Rsim

ee√
6

(17)

A Constraint Activation Function

Supp. Fig. 5. Probing mechanisms of loop and linker assembly
A. Each panel depicts the convergence of Rg and Ree over the optimization iterations for representative loop (black lines) and linker
(green lines) optimizations with n = 50 for the Mpipi-GG (left panels) and HPS (right panels) force-fields. B. The panels depict normal-
ized contact maps over representative trajectories for the loop (left) and linker (right) solutions under the HPS force field, analogous to
the Mpipi-GG force field depicted in Figure 3. For contact frequencies, red/blue regions represent higher/lower expected frequencies
when contrasted with an ideal polymer of identical length.
C. The Rg (top) and Ree (bottom) are shown for both the optimized loop solution (WT or wild-type) and a set of mutational scans. On
the right, the corresponding contact maps (as in B.) are shown for a subset of mutants.
D. The Rg (top) and Ree (bottom) are shown for both the optimized linker solution (WT or wild-type) and a set of mutational scans. On
the right, the corresponding contact maps (as in B.) are shown for a subset of mutants.

Supplementary Figure 5 depicts the convergence of the Rg and Ree values for the representative optimizations depicted137

in Figures 3C.I-II. Supplementary Table 2 lists the results of the mutational analyses summarized in the insets of Figures138

3C.I-II.139

Simulations were performed using the same parameters as for the Rg and Ree optimizations in Figure 2D-E.140

Supplementary Section 7: Sequence Constraints141

A Constraint Activation Function142

Consider a function C : Rn×20 → R that accepts a probabilistic sequence π as input and returns a scalar value. We wish143

to design a sequence that satisfies a minimum value Cmin of this function. Following the work of Krueger and Ward (8),144

Sequence Rg Ree Loss

Solution 15.4 15.6 -9.0
P>A 13.8 15.0 -7.6
R>A 12.5 14.5 -6.5
W>A 25.0 56.8 -1.8
Y>A 19.1 28.5 -7.5
W>Y 18.7 28.1 -7.3
Y>W 14.6 14.3 -8.8

Min. Ree 11.7 13.8 -6.1
Max. Rg 36.2 93.9 2.1

(a) Loop

Sequence Rg Ree Loss

Solution 30.0 81.9 -3.5
K>A 25.6 68.1 -2.2
N>A 30.0 82.2 -3.5
P>A 26.2 66.9 -1.1
R>A 23.4 61.1 -1.6
K>R 29.1 80.4 -3.7
R>K 28.3 76.5 -3.0

Max. Ree 37.2 96.6 -2.2
Min. Rg 10.6 17.9 3.3

(b) Linker
Supp. Table 2. Mutational analysis for the loop and linker optimizations. Loss column for loop and linker tables represents Ree√

6
− Rg

and Rg − Ree√
6

, respectively.

we define a ReLU function that increases sharply below the minimum value and increases slowly above this threshold:145

ϕC(Cπ) =
{

m1Cπ +(1−m1Cmin), for Cπ < Cmin

m2Cπ +(1−m2Cmin), for Cπ ≥ Cmin

}
(18)

where Cπ = C(π) and m1 and m2 are hyperparameters with m1 << m2 ≤ 0. Note that ϕC is defined such that ϕC(Cmin) =146

1.0 and values Cπ < Cmin are strongly penalized while values Cπ ≥ Cmin are mildly rewarded.147

For a set of such constraint functions Ci and their corresponding activation functions ϕCi
, we define our objective function148

as the geometric mean of the baseline loss function and the activated constraints,149

Lconst(π) = L(π)×
∏

i

ϕCi
(Ci(π)) (19)

where L(π) is the RMSE between the simulated and target observables in the case of Rg and Ree. There are alternative150

methods for applying such constraints – for example, projected gradient methods – though such methods would be151

complicated by our annealing of the sequence entropy and we find that the geometric mean works well in practice.152

B Disorder Constraint153

Since sequence entropy does not provide a reliable measure of disorder for probabilistic sequences, we turn to Metapre-154

dict, a machine learning model trained to predict consensus sequence disorder (9). Consider Metapredict as a function155

MP : Rn×20 → Rn that maps a probabilistic sequence to an expected disorder at each position. We therefore define the156

disorder of a probabilistic sequence as the average predicted disorder, i.e.157

D(π) = 1
n

n∑
i=1

MP(π)i (20)

Since we use Metapredict v2, which predicts normalized measures of disorder, D(π) ∈ [0,1]. Note that Metapredict was158

only trained on discrete sequences and therefore was not intended for use with probabilistic sequences.159

Though Metapredict provides a more reliable proxy for sequence disorder than sequence entropy, it still underpredicts160

the expected disorder for high entropy sequences and in practice we only wish to demand that the final sequence is161

disordered. Thus, we anneal Dmin from 0.2 to 0.8 throughout the first 80% of the optimization iterations. For ϕD, we162

define m1 = −1000 and m2 = −0.01.163

Reference states for the optimization in Figure 4B were collected using the same parameters as in Figure 2B. Reference164

states for the optimizations in Figure 4C-E were collected using the same parameters as in Figure 2D-E. Designed165

sequences in Figure 4C and Figure 4 were obtained using 150 and 200 iterations of gradient descent, respectively.166

Forward simulations of designed sequences to compute the statistics presented in Figure 4C-E were performed using the167

same parameters as in the validation of designed sequences in Figure 2.168

C Charge Distribution Constraints169

In Figure 4, we design IDP sequences with a target distribution of positively and negatively charged residues. Therefore,170

we require a definition for the ratio of a probabilistic sequence that is a given residue type. For clarity, we restrict attention171

D Overparameterization

to the case of positively charged residues.172

For a discrete sequence −→s of length n, the ratio of positively charged residues is defined as173

R+(−→s) = 1
n

n∑
i=1

δ+(−→s i) (21)

where δ+(−→s i) = 1 if −→s i is a positively charged residue and δ+(−→s i) = 0 otherwise. Since the distribution of residues at174

each position is normalized in a probabilistic sequence, this definition can be generalized to such sequences:175

E[R+(−→s)]−→s ∼π =
∑

−→s ∈S

p(−→s |π)R+(−→s) (22)

=
∑

−→s ∈S

p(−→s |π)
(

1
n

n∑
i=1

δ+(−→s i)
)

(23)

= 1
n

n∑
i=1

∑
−→s ∈S

p(−→s |π)δ+(−→s i) (24)

= 1
n

n∑
i=1

20∑
j=1

πijδ+(−→s i) (25)

= 1
n

n∑
i=1

πi ·
−→
δ+ (26)

where
−→
δ+ ∈ R20 is a one-hot vector denoting whether or not a given amino acid is positively charged and · denotes the176

dot product.177

As for disorder constraints, we apply an activation function ϕR to the computed ratios. For the ratios of both positively and178

negatively charged residues, we set Rmin = 0.495 to relax the search space, and define m1 = −1000 and m2 = −0.01.179

In practice all presented sequences satisfy the constraints within 5% error. We initialize logits corresponding to a value of180

π such that each position has a 0.495 probability of being both positively and negatively charged, and uncharged residue181

types uniformly distributed over the remaining cumulative probability 1.0−2×0.495 = 0.01.182

Sensor Type Response Type Rlo
g Rhi

g Loss

Salt Contractor 23.1 14.1 -9.0
Salt Expander 14.4 26.6 -12.2

Phosphorylation Contractor 24.4 23.3 -1.1
Phosphorylation Expander 16.7 19.4 -2.7

Temperature Contractor 32.0 31.3 0.7
Temperature Expander 14.2 19.7 -5.5

Supp. Table 3. Optimized sensors of length n = 50 for a range of sensor and response types. For a salt sensor, Rlo
g and Rhi

g

correspond to 150 mM and 450 mM, respectively. For a phosphorylation sensor, Rlo
g and Rhi

g correspond to the 25th position fixed as
serine (S) and Glutamic acid (E), respectively. For a temperature sensor, Rlo

g and Rhi
g correspond to 293.15 K (20 C) and 363.15 K

(90 C), respectively.

D Overparameterization183

In Figure 4, we overparameterize the search space by optimizing over the weights of a neural network that outputs a n×20184

matrix of logits. We use a fully-connected architecture for all networks with 6 layers of 4000 nodes each. We apply a Leaky185

ReLU activation function bewteen each layer. We pretrain the network to output a target set of logits corresponding to a186

target probabilistic sequence (i.e. a uniform-distributed probabilistic sequence or one with a target distribution of charged187

residues) Given a target initial pseq πinit, we define the following pretrain loss:188

Lpretrain(θ) = 1
4n

∑
ij

100 · (πpred
ij −πinit

ij)2 (27)

Supp. Fig. 6. Mutational analyses for the optimized salt sensors
A-B. For the salt sensing contractor (A) and expander (B) reported in Figure 5, we perform alanine scanning (gray background) as well
as rational compositional mutations (green background) informed by the underlying sensor mechanism. For each of the sensors, we
report the effect of particular mutations on Rg at low (top subpanel) and high salt (bottom subpanel). On the right, normalized contact
frequencies are shown for particular mutants for low (top subpanel) and high salt (bottom subpanel). For contact frequencies, red/blue
regions represent higher/lower expected frequencies when contrasted with an ideal polymer of identical length.

where πpred = softmax(NNθ(k)), θ are the weights of the neural network, and NNθ(k) denotes the output of the neural189

network with weights θ and a fixed random seed as input. We use an Adam optimizer with a learning rate of learning rate190

of 10−5 for pretraining.191

Supplementary Section 8: Sensor Optimizations192

Below, we provide simulation and optimization details for each type of sensor design. In all cases, reference states193

for optimization were collected using the same parameters as in Figure 2D-E and we applied 100 iterations of gradient194

descent. Forward simulations of the designed sequences were performed using the same parameters as in the validation195

of designed sequences in Figure 2.196

A Salt Sensors197

In Figure 5, we design IDPs that expand or contract upon the addition of salt. In Mpipi, a single Debye length κ was198

used to reproduce behavior of IDPs at a salt concentration of 150 mM. To model the effects of increased salt, we followed199

Debye-Huckel theory in which200

κ−1 =
√

εRε0kT

2e2I
(28)

where I is the ionic strength, ε0 is the permittivity of free space, εR is the dielectric constant, and e is the elementary201

charge. Thus, given the default Debye length in Mpipi κ150, we obtain the Debye length for an arbitrary salt concentration202

I (expressed in mM) as203

κI = κ150
√

I/1000√
150/1000

(29)

More generally, salt concentration can affect simulation parameters in multiple ways (for instance, the dielectric permittivity)204

and such effects can be easily accommodated in our framework through empirical models.205

B Phosphorylation Sensors

Supp. Fig. 7. Phosphorylation and temperature sensing IDPs
A-B. Optimized contractor and expander sequences with normalized contact frequency maps without (A) and with (B) phosphorylation
computed from representative trajectories. For these solutions, the IDPs comprise 10 phosphosites i.e., Serines that are roughly equi-
spaced, and highlighted in the sequence. For contact frequencies, red/blue regions represent higher/lower expected frequencies when
contrasted with an ideal polymer of identical length.
C. The change in Rg for optimized phosphorylation sensors that exploit different numbers of phosphosites for contractors (white
background) and expanders (green background). The magnitude of the effect is generically larger with more phosphosites - the axis
label denotes the type of sensor (c/e), the number of serines(1/5/10), and the phosphorylation status (S/E).
D-E. Optimized contractor and expander sequences with normalized contact frequency maps at low (D) and high (E) temperatures. For
contact frequencies, red/blue regions represent higher/lower expected frequencies than an ideal polymer of identical length.
F. The change in Rg for optimized temperature sensors for contractors (white background) and expanders (green background) upon
mutation of key residues. The axis label denotes the type of mutant.

We formulate the sensor design problem similar to that for the design of loops and linkers, except that the loss function206

involves expectations from two distinct ensembles. We define two salt concentrations Ilo and Ihi. corresponding to Debye207

lengths κlo and κhi. For a given probabilistic sequence π, we compute the Rg in each ensemble, denoted Rlo
g and Rhi

g ,208

and define the loss for the contractor as209

Lcontractor(π) = Rhi
g −Rlo

g (30)

and the loss for the expander as210

Lexpander(π) = Rlo
g −Rhi

g (31)

As a demonstration of the flexibility of our method, we impose the constraint that the sequence begins with a M-His6211

motif. This represents an experimentally-relevant constraint as the start codon is required for expression and the His6212

tag is commonly used for protein purification. We impose this constraint by setting the first seven rows of the probabilistic213

sequence (computed via π = softmax(λ/τ) where λ are logits and τ is a temperature parameter) to a n × 7 one-hot214

sequence representing this motif.215

We optimize contractors and expanders for lengths n = 50, n = 75, and n = 100. For n = 50, we also conduct a mutational216

analysis of our solutions to evaluate both the effect of individual residue types via alanine substitutions, and the Pareto217

front via substitution of residues with residue types similar in their electrostatic properties.218

Sequence Rlo
g Rhi

g Loss

Solution 23.1 14.1 -9.0

Alanine
Scanning

W>A 26.6 23.3 -3.3
Y>A 25.6 16.1 -9.5
R>A 11.5 11.5 0.0

Conformational
Scanning

R>W 10.5 10.5 0.0
W>Y 26.7 19.5 -7.2
Y>W 21.1 13.7 -7.4
W>R 29.3 25.7 -3.6
R50 30.4 26.8 -3.6

(a) Contractor

Sequence Rlo
g Rhi

g Loss

Solution 14.4 26.6 -12.2

Alanine
Scanning

W>A 15.0 22.1 -7.1
P>A 12.9 15.7 -2.8
K>A 19.8 26.8 -7.0
D>A 24.8 26.6 -1.8
E>A 15.7 26.4 -10.7
R>A 18.7 24.9 -6.2

Conformational
Scanning

E>D 14.2 26.3 -12.1
D>E 14.5 26.9 -12.4
K>R 14.0 24.4 -10.0
R>K 14.2 25.3 -11.1
P>W 11.8 13.8 -2.0
W>P 14.6 22.2 -7.6

E25K25 13.4 15.6 -2.2

(b) Expander
Supp. Table 4. Mutational analysis via alanine substitutions and rational substitutions for the optimized salt sensors depicted in Figure
5. Loss column for contractor and expander tables represents Rhi

g − Rlo
g and Rlo

g − Rhi
g , respectively.

B Phosphorylation Sensors219

We next sought to design IDPs that contract or expand upon phosphorylation rather than in the presence of salt. Since220

phosphorylation is not explicitly modelled in Mpipi, we choose a residue pair representative of a phosphorylation event221

and modelled phosphorylation as the transition from one residue to the other; for our purposes, we considered the222

phosphorylation of serine (S) to Glutamic acid (E). For a given length n, we choose a phosphorylation position 1 ≤223

iphos ≤ n and model the dephosphorylated and phosphorylated ensembles by explicitly setting the ith
phos residue to be (a224

one-hot vector representing) S and E, respectively. The loss function is defined as in Supplementary Equations 30 and 31225

where Rlo
g and Rhi

g correspond to the dephosphorylated and phosphorylated ensembles, respectively, and we similarly226

impose a M-His6 prefix.227

C Temperature Sensors228

We also design IDPs that contract or expand in response to changes in temperature. The optimization problem is defined229

as above with Rlo
g and Rhi

g corresponding to 293.15 K (20 C) and 363.15 K (90 C), respectively, and we again impose a230

M-His6 prefix. For simplicity, we do not modify κ in accordance with the change in kT .231

Supplementary Section 9: Binder Optimizations232

In Figure 6, we present the optimization of binder sequences for a fixed substrate. We use a simple formulation of233

the binder design problem in which we optimize for the binder sequence that minimizes the interstrand distance. The234

interstrand distance rcom is defined as the distance between the center of masses −→x binder
com and −→x substrate

com , each defined235

following Supplementary Equation 14. To maximize the probability of sampling configurations with low interstrand distance,236

we apply a bias potential237

Ubias(rcom) =
{

k(rcom − rmax)2, if rcom > rmax

0, otherwise

}
(32)

To correct this bias, we redefine the probability of a state in DiffTRE (pθ(−→x i) in Equation 20) following the standard238

umbrella sampling correction:239

pθ(−→x i) = 1
ωi

exp(−β (Uθ (−→x i))) (33)

where ωi = exp(−β(Ubias
θ (−→x i))). For the optimization depicted in Figure 6, we design a binder of length n = 50 and set240

k = 1 and rmax = 300.241

C Temperature Sensors

Supp. Fig. 8. Probing IDP binder-substrate interactions
A. The optimization of a binder (n = 50) for Whi3 (n = 93) is depicted by convergence to low interstrand distance over the trajectory.
B. Normalized contact frequency map for the optimized Whi3 binder, highlighting both intramolecular and intermolecular interactions.
Red/blue regions represent higher/lower expected frequencies when contrasted with an ideal polymer of total length binder + substrate.
On the right, a representative bound snapshot of binder (green) and substrate (grey) is depicted.
C. Computed effective interaction coefficients (Eij , units of nm3) between species i, j are plotted comparing optimized binder-substrate
interactions with substrate-substrate interactions. More negative values represent stronger interactions.

To demonstrate the flexibility of our method, we optimize binders for two additional sequences: (1) a positively charged242

homopolymer (polyR) and (2) the low complexity region of Whi3 (see Supplementary Figure 8). For PolyR, we design a243

binder of length n = 30 and set k = 10 and rmax = 150. For Whi3-LC, we design a binder of length n = 50 and set k = 1244

and rmax = 250.245

We then compute effective interaction coefficients to estimate the strength of interactions between substrates and ligands,246

as well as homotypic substrate interactions. As reported in (10), and subsequently in a related paper (11), such coeffi-247

cients broadly correlate with experimental or simulation derived interaction coefficients and multicomponent condensation.248

Specifically, we compute the pairwise dimer coefficient (Brdp
ij as defined in (10)) between two biomolecular species i and249

j, and report normalized interactions Eij = Bij

ninj
in units of nm3.250

For the PolyR substrate, we sample reference states for optimization using 10 independent simulations each consisting of251

250 ps of equilibration and 7.5 ns of simulation, with conformations sampled every 10 ps. For Whi3-LC and FUS-LC, we252

sample reference states using 8 independent simulations each consisting of 10 ns of simulation time with conformations253

sampled every 10 ps. We use 500 ps and 250 ps of equilibration time for Whi3-LC and FUS-LC, respectively. We254

validated each designed sequence using a forward simulation with periodic boundaries and the binder and substrate255

initialized in an unbound configuration. For each design, we evaluated a range of box sizes up to 500Å and found that256

our designed binders reliably bound the target substrate. Validations for each design involved 10 independent simulations257

each consisting of 10 ns of equilibration and 250 ns of simulation, sampling conformations every 100 ps.258

Bibliography259

1. Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte carlo gradient estimation in machine learning. The Journal of Machine Learning Research,260

21(1):5183–5244, 2020.261

2. Megan C Engel, Jamie A Smith, and Michael P Brenner. Optimal control of nonequilibrium systems through automatic differentiation. Physical Review X, 13(4):041032,262

2023.263

3. Luke Metz, C Daniel Freeman, Samuel S Schoenholz, and Tal Kachman. Gradients are not all you need. arXiv preprint arXiv:2111.05803, 2021.264

4. Wolfgang Kabsch. A solution for the best rotation to relate two sets of vectors. Foundations of Crystallography, 32(5):922–923, 1976.265

5. Jeffrey M. Lotthammer, Garrett M. Ginell, Daniel Griffith, Ryan J. Emenecker, and Alex S. Holehouse. Direct prediction of intrinsically disordered protein conformational266

properties from sequence. Nature Methods, 21(3):465–476, March 2024. ISSN 1548-7105. doi: 10.1038/s41592-023-02159-5.267

6. Joe G. Greener. Differentiable simulation to develop molecular dynamics force fields for disordered proteins. Chemical Science, 15(13):4897–4909, 2024. doi:268

10.1039/D3SC05230C.269

7. Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin, Robert Verkuil, Ori Kabeli, Yaniv Shmueli, Allan dos Santos Costa, Maryam270

Fazel-Zarandi, Tom Sercu, Salvatore Candido, and Alexander Rives. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science,271

379(6637):1123–1130, March 2023. doi: 10.1126/science.ade2574.272

8. Ryan K Krueger and Max Ward. Jax-rnafold: scalable differentiable folding. Bioinformatics, 41(5):btaf203, 2025.273

9. Ryan J Emenecker, Daniel Griffith, and Alex S Holehouse. Metapredict V2: An update to metapredict, a fast, accurate, and easy-to-use predictor of consensus disorder274

and structure. BioRxiv, pages 2022–06, 2022.275

10. Kyosuke Adachi and Kyogo Kawaguchi. Predicting Heteropolymer Interactions: Demixing and Hypermixing of Disordered Protein Sequences. Physical Review X, 14276

(3):031011, July 2024. doi: 10.1103/PhysRevX.14.031011.277

11. Garrett M Ginell, Ryan J Emenecker, Jeffrey M Lotthammer, Alex T Keeley, Stephen P Plassmeyer, Nicholas Razo, Emery T Usher, Jaqueline F Pelham, and Alex S278

Holehouse. Sequence-based prediction of intermolecular interactions driven by disordered regions. Science, 388(6749):eadq8381, 2025.279

	Generalized design of sequence–ensemble–function relationships for intrinsically disordered proteins

	SpringerNature_NatComputSci_881_ESM.pdf
	Stochastic Gradient Estimators for Dynamical Systems
	Stochastic Gradient Estimation
	Differentiable Molecular Dynamics

	Benchmarking
	Rg Optimizations
	Ree Optimizations
	Cross-Validation with Alternative Force Fields
	Loop and Linker Optimizations
	Sequence Constraints
	Constraint Activation Function
	Disorder Constraint
	Charge Distribution Constraints
	Overparameterization

	Sensor Optimizations
	Salt Sensors
	Phosphorylation Sensors
	Temperature Sensors

	Binder Optimizations

