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Generalized design of sequence–ensemble–
function relationships for intrinsically 
disordered proteins
 

Ryan K. Krueger    1, Michael P. Brenner    1,2   & Krishna Shrinivas    3,4 

The design of folded proteins has advanced substantially in recent years. 
However, many proteins and protein regions are intrinsically disordered and 
lack a stable fold, that is, the sequence of an intrinsically disordered protein 
(IDP) encodes a vast ensemble of spatial conformations that specify its 
biological function. This conformational plasticity and heterogeneity makes 
IDP design challenging. Here we introduce a computational framework for 
de novo design of IDPs through rational and efficient inversion of molecular 
simulations that approximate the underlying sequence–ensemble 
relationship. We highlight the versatility of this approach by designing IDPs 
with diverse properties and arbitrary sequence constraints. These include 
IDPs with target ensemble dimensions, loops and linkers, highly sensitive 
sensors of physicochemical stimuli, and binders to target disordered 
substrates with distinct conformational biases. Overall, our method 
provides a general framework for designing sequence–ensemble–function 
relationships of biological macromolecules.

The basis of biomolecular function is often specified by a sequence 
that encodes an ensemble of 3D conformations1. A prominent exam-
ple is intrinsically disordered protein regions (IDPs), which are found 
in most living organisms and play key roles in diverse cellular func-
tions including transcription, cell signaling, cellular immunity and 
translation2–4. Intrinsically disordered protein regions lack a stable 
3D structure, they instead dynamically interconvert between a large 
range of non-random conformations5–7 whose local and global proper-
ties shape cellular functions2. Intrinsically disordered protein regions 
facilitate molecular recognition through embedded short linear motifs8 
and fuzzy interactions with multiple targets2, and when tethered as 
intervening linkers or spacers, they modulate interactions between 
adjacent folded-domains9. The conformational plasticity that underlies 
IDPs is highly sensitive to physicochemical and environmental con-
texts, and thus they often function as intracellular sensors10. Further, 
IDPs regulate assembly of higher-order biomolecular assemblies and 
condensates11–14, often through low-affinity multivalent interactions, 

which play central roles in cellular signaling and information process-
ing. Finally, dysregulation of IDPs and IDP-dependent interactions is 
increasingly correlated with multiple pathological states11,15. There is 
thus widespread interest in designing IDPs with tailored functions for 
a variety of roles in human health and industry.

Despite recent advances in protein structure design enabled 
by the Protein Data Bank (PDB) and machine learning16–19, these 
computational methods remain limited in their ability to design 
disordered proteins. Structures of IDPs are not characterized by 
single stable folds, they instead occupy a vast ensemble of dynamic 
configurations. Recent developments in coarse-grained molecular 
simulations have successfully predicted ensemble properties of 
IDPs20–22. These simulations produce training data for approximate 
machine-learning models that predict particular properties5,23 (for 
example, the radius of gyration and polymer exponents) and can 
be subsequently inverted for design24. Although each method has 
found success, using separate algorithms for the forward and inverse 
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Our key innovation is the development of a differentiable algo-
rithmic framework to invert the simulation-based sequence–ensemble 
relationships. To do this, we leverage recent advances in differentiable 
programming and stochastic gradient estimation26–29 to compute the 
gradient of a loss function that depends on any set of ensemble-averaged 
properties: ∂seqℒ(⟨P sim

1 ⟩, ⟨P sim
2 ⟩,⋯ ) , where P sim

i  denotes the ith 
state-level property. As this quantity is only well-defined for smooth 
variable changes, we use a continuous representation of the sequence 
that is amenable to simulation and parallelization on GPUs (see the 
‘Computational performance and tradeoffs’ section in the Methods). 
For a sequence of L residues, this continuous probabilistic representa-
tion (Fig. 1b), π = f(λ), is defined by logits λ of size L × 20. The residue 
identity at every site is characterized by a normalized probability vector 
over the different types of amino acids. A particular discrete sequence 
corresponds to a one-hot encoding, meaning each position is repre-
sented by a vector of length 20 with all entries but one being 0. In 
general, ensemble-averaged predictions are not identical to predic-
tions from a distribution of discrete sequences sampled from the same 
distribution (see equation (4) and Supplementary Fig. 3).

Although, in principle, libraries such as JAX-MD27 enable gradi-
ent calculation over unrolled molecular dynamics trajectories, this 
is slow, scales poorly with system size and is plagued by numerical 
instability (Supplementary Fig. 1 and Supplementary Section 2). To 
address this, we expand on a perturbative calculation developed 
independently by Zhang et al.29 and Thaler and Zavadlav28 to calcu-
late the gradient with respect to π from a set of states sampled from 
the equilibrium Boltzmann distribution. Correspondingly, forward 
molecular dynamics simulations are set up (see the ‘Simulations’ sec-
tion in the Methods) to ensure equilibration and broad sampling of 
the reference conformational repertoire (Supplementary Fig. 2 and 
Supplementary Section 2). Employing this calculation provides con-
siderable speed and accuracy increases in gradient estimation and 
allows re-use of simulation snapshots for multiple sequence updates. 
Finally, we incorporate an annealing procedure that gradually forces 
π to become increasingly discrete through the optimization (Fig. 1c; 
refer also to the ‘General framework for optimizing particle identi-
ties’ section in the Methods). Unless otherwise specified, we initial-
ize all optimizations with a uniform distribution. Once optimized, 
target properties are evaluated and validated with separate, longer 

problems reduces accuracy and generalizability to different target 
properties and force-field parameters. It would be much more pref-
erable to directly invert the molecular simulations that model the 
sequence–ensemble relationship.

In this paper we introduce an algorithmic approach to design 
IDPs with tailored properties by inverting molecular simulations. Our 
framework uses gradient-based optimization on molecular simulations 
to design sequences with arbitrary equilibrium properties—bridging 
machine-learning technology with ideas from statistical physics. We 
employ this method to engineer IDP sequences for a wide range of 
ensemble dimensions of varying complexity, including highly opti-
mized loops and linkers. Our framework naturally accommodates 
arbitrary sequence constraints, which we highlight through the design 
of sequence patterning variants with the same composition but distinct 
ensemble properties. We then construct IDP-based sensors that are 
sensitive to salt concentrations, temperature and phosphorylation. 
Finally, we design candidate IDP binders for highly disordered biologi-
cal and synthetic substrates. Of note, the accuracy of our predictions 
is limited by the accuracy of simulation parameters that describe IDP 
sequence–ensemble relationships; our contribution is to show how 
to find optimal sequences given a potential. Although our proposed 
method is, in principle, potential-agnostic, it will benefit from the 
continued iteration between force-field development and experiment. 
Overall, our paper outlines a flexible strategy for de novo IDP design 
that can be generalized to engineer sequence–ensemble–function 
relationships for diverse biopolymers.

Results
Model formulation
Rational de novo design of IDPs requires two key ingredients: (1) a rea-
sonably accurate forward model of the sequence–ensemble–function 
paradigm (Fig. 1a) and (2) an algorithm to invert this through directed 
search of sequence space towards a desired functional property. 
Over the past few years, coarse-grained molecular simulations with 
custom-pair potentials have made dramatic improvements5,21,25 in 
predicting effective ensemble properties of IDPs. Here we focus on 
molecular dynamics simulations using 1 AA = 1 bead coarse-graining 
with the Mpipi-GG force-field (refer to the ‘Mpipi force-field’ section 
in the Methods and Supplementary Section 1)21,23.
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Fig. 1 | Method for inverse design of IDPs. a, The amino acid sequence of an 
IDP encodes for an ensemble of dynamic 3D conformation structures, which 
determine properties shaping molecular and cellular functions. b, A discrete IDP 
sequence (a vector of length n, where each position is typically a categorically 
represented amino acid character) is relaxed to a continuous, probabilistic 
sequence representation π (a matrix of size n × 20). Here, the (i, j) entry of π 
is the probability of residue at position i being amino acid j. c. To model the 

forward sequence–ensemble relationship, we simulate the probabilistic 
sequence through coarse-grained molecular dynamics simulations, defining 
the Hamiltonian of the system as the expected Hamiltonian over all sequences 
(refer to the ‘General framework for optimizing particle identities’ section in 
the Methods). To invert this relationship for sequence design, we optimize this 
probabilistic sequence π via gradient descent and anneal to a discrete sequence 
through the optimization.
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simulations of the entirely discrete designed sequence (Supplemen-
tary Section 3).

Designing IDPs with varying ensemble dimensions
Ensemble-averaged dimensions of an IDP, for example, the radius 
of gyration (Rg) or the end-to-end distance (Ree), are coarse-grained 
metrics that reveal conformational biases that can correlate with bind-
ing and emergent phase behavior20,30,31. We therefore first set out to 
design an IDP of fixed sequence length (n = 50) with a target dimen-
sion of 〈Rg〉 = 20 Å. We then update π in the direction of the desired 
〈Rg〉 while simultaneously annealing—albeit gradually—towards a dis-
crete sequence (Fig. 2c). Our routine converges (over 50 epochs and 
2.5 h on an NVIDIA A100 GPU) to a sequence (Fig. 2b, Supplementary 
Data and Supplementary Section 3) that explores a range of conforma-
tions (Supplementary Fig. 3) with an ensemble-averaged Rg of ~20.1 Å. 
Re-running the optimization with varying random seeds leads to dif-
ferent sequences with similar values of Rg, highlighting the ability 
of our approach to identify multiple sequences that exhibit similar 
ensemble-averaged properties (Supplementary Fig. 3 and Supple-
mentary Data).

With this framework, we are able to generate sequences of multiple 
lengths (n = 50, n = 75) across a wide Rg range (Fig. 2d). When we change 
the loss to correspond to a different physical property, that is, the 
end-to-end radius or Ree—a dimension that provides insights into linker 
function in multi-domain proteins9—we are able to design IDPs across 
a wide Ree range (Fig. 2d and Supplementary Section 4). Predictions 

of Rg and Ree for designed sequences from the coarse-grained Mpipi 
model broadly correlate (Supplementary Fig. 4) with more fine-grained 
all-atom simulations (the GB99dms force-field is taken from ref. 32; see 
also Supplementary Section 5).

We find that the optima we obtain using this method are more 
accurate than those obtained with a pure machine-learned predictor 
derived from Mpipi-GG simulations (ALBATROSS)23, when compared 
against the underlying molecular dynamics simulations for the ground 
truth (Supplementary Table 1). As an example, a sequence we generate 
(n = 50, 〈Rg〉 = 32.55 Å, ⟨Rg⟩

target = 32.5  Å) is incorrectly predicted by 
ALBATROSS to be off by ~4 Å (Fig. 2e). A core strength of our algorithm 
is that by directly optimizing over simulations, we can explore a wider 
design space that is not subject to approximations underlying 
machine-learned descriptors. This means that more generally, our 
method can be flexibly applied to any force-field without requiring 
further data generation, architectural engineering, fine tuning or 
retraining of existing models.

We demonstrate this by designing IDPs of particular ensemble 
dimensions using the same method but with the HPS force-field20—
a different commonly used pair potential (Fig. 2d). Although each 
force-field incorporates distinct biophysical priors, we find a broad 
correlation in predicted Rg for all sequences between the force-field 
they were optimized on as well as the one they were not optimized with 
(Supplementary Section 5 and Supplementary Fig. 4a). Together, our 
method provides a versatile approach to identify IDPs with specified 
conformation-averaged single-chain properties.
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Fig. 2 | Designing IDPs with varying ensemble dimensions. a, We use the 
framework defined in Fig. 1 for design of IDPs with defined ensemble-averaged 
physical dimensions, specifically, Rg and Ree. b, An example optimization to 
design an IDP of length n = 50 with Rg = 20 Å. The top panel represents the Rg 
from the simulated probabilistic sequence and the bottom panel represents 
the average sequence entropy at each position. Highlighted points (in pink) 
represent approximately the start, mid-point and end of the optimization. c, The 
evolution of the probabilistic sequence throughout the optimization depicted 
in b at highlighted points accompanied by a characteristic conformation in a 
box of side a = 75 Å. Each residue is colored differently and the column height 

corresponding to each residue position is the likelihood of being each residue. 
The probabilistic sequence is initialized as a uniform distribution of sequences, 
with each residue having an equal probability at each position, and the final 
sequence is nearly discrete. d, Each panel shows results for a set of optimizations, 
with each point comparing the predicted versus target ensemble dimension 
(Rg or Ree) for a particular IDP sequence. The different panels highlight solutions 
for different sequence lengths (n = 50, 75) and for different force-fields (Mpipi-
GG, left two panels; HPS, right two panels). e, The optimization trajectory for a 
sequence of length n = 50 for target Rg = 35 Å in which ALBATROSS under-values 
the Rg of the final optimized sequence by ~4 Å.
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De novo design of loops and linkers
We next asked whether we can construct IDPs with more complex 
descriptors of their conformational ensembles? In particular, we 
focused on designing sequence variants that maximized decoupling 
between Rg and Ree as opposed to the linear scaling found in ideal  
polymers, unfolded proteins, and many naturally occurring IDPs33,34. 
We reasoned that such sequence variants could potentially  
represent optimally designed loops (Rg − Ree/√6 >> 0 ) or linkers 
(Rg − Ree/√6 << 0) (Fig. 3a and Supplementary Section 6).

For a sequence of fixed length (L = 50), we identify highly opti-
mized loop and linker sequences with finely tuned mechanistic prop-
erties. Our loop optimization yields a low-complexity sequence with 
sticky aromatic patches comprising tryptophans (W) and tyrosines (Y) 
at either terminus—interspersed by prolines (P) and arginines (A) that 
kink out the intervening sequence—as highlighted by the normalized 
contact frequency maps and representative conformations (Fig. 3b). 
Although the underlying force-field predicts that W–W interactions 
are stickier and perhaps should thus drive stronger loops, mutating 
the mixture of Y/Ws in our solution to either all Ys or Ws leads to a less 
optimal loop (Fig. 3b and Supplementary Table 2). Similarly, mutational 
scans of each residue type into alanines or choosing less-complex losses 
lead to suboptimal loops (Supplementary Table 2)—generically reflect-
ing an inability of simple sequence perturbations to decouple reduc-
tions in end-to-end distances from concomitant reductions in chain 
Rg. The optimal loop architecture here hence arises from tradeoffs 
between overall sequence composition and patterning and emergent 
many-body interactions. When optimizing for linkers, we find that 
low-complexity sequences that intersperse prolines amongst a back-
bone of positively charged arginines, maximally decoupling Ree from 
Rg (Fig. 3c). This is largely expected as like-charges have short-range 
repulsive interactions; simple mutation scans are consistent with this 
intuition (Fig. 3c). Interestingly, we still identify a slightly improved 
linker variant in which lysines (K) are substituted with arginines (R). 
Overall, these design problems reinforce the ability of our algorithm to 
navigate high-dimensional sequence-spaces while balancing tradeoffs 
in ensemble properties.

Engineering IDPs with arbitrary sequence constraints
An important aspect of protein design is to engineer molecules that are 
subject to sequence constraints. For IDPs, such constraints could span 
requirements for highly disordered sequences, particular sequence 

compositions or motifs, or any other combinatorial sequence fea-
tures. To incorporate arbitrary constraints, we generically expand 
our algorithmic framework by building on our previous work35. First, 
constraints are enforced through leaky ReLu functions multiplying 
the target property loss, resulting in gradients that navigate sequence 
space while maintaining constraints (Fig. 4a). Second, instead of 
directly optimizing over the sequence, we optimize over the weights 
of a pre-trained and fully connected neural network that parametrizes 
π (Fig. 4a). Together, this presents a modular and generalizable strat-
egy to navigate constrained high-dimensional sequence spaces (Sup-
plementary Section 7).

With this framework, we first set out to identify IDPs that are  
constrained to high disorder. We leverage a recent machine- 
learning-based disorder predictor, Metapredict36, to measure and 
constrain disorder (Supplementary Section 7). Importantly, as the 
disorder prediction (and requirement) is only exact for a discrete 
sequence, the disorder contribution to the loss is gradually made 
more stringent over the optimization procedure (Fig. 4b). Design-
ing compact proteins (meaning those with a small Rg) without any 
constraints tends to reveal highly hydrophobic proteins that are 
typically predicted to be well-folded and not disordered (see Fig. 4c). 
When we incorporate our disorder constraint, we are able to identify 
sequences that are simultaneously compact and highly disordered 
(Fig. 4b) across a range of Rg (Fig. 4c).

We next set out to design IDPs with compositional constraints. 
Motivated by a past work37, we explored the effect of sequence pattern-
ing (particularly blockiness) on ensemble dimensions while keeping 
overall composition fixed at 50% positive and negative charges. To 
perform this multi-constraint optimization (Fig. 4d), we pre-train the 
overparameterized fully connected neural network to output a set of 
logits corresponding to the target charge distribution, and then use 
this in our constrained optimization procedure. Consistent with past 
predictions, we find an inverse relationship between ensemble dimen-
sions and sequence blockiness (Fig. 4e).

Furthermore, to demonstrate the flexibility of our framework to 
accommodate experimental constraints, all subsequently designed 
sensors (Fig. 5 and Supplementary Fig. 7) are constrained to include a 
start codon amino acid and an N-terminal 6xHis-tag for affinity purifica-
tion. This constraint is enforced by setting the first seven rows of π to a 
one-hot array denoting the MHHHHHH subsequence. In principle, our 
framework could accommodate any such fixed subsequence. Together, 
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Fig. 3 | Shaping global conformational biases through loops and linker IDPs. 
a, A graphical illustration of ensemble coupling of Rg and Ree, highlighting linear 
relationships for ideal homopolymer chains (Rg = Ree/√6) and decoupled 
off-diagonal points for loops and linkers. Below, we show the loss we employ for 
the loop and linker design problems, expressed to maximize the decoupling 
between Rg and Ree/√6. b,c, For the optimized loop (b) and linker (c) sequences, 
we depict the normalized contact frequencies computed over a trajectory. 

Representative configurations colored by amino acid identity are shown to the 
right (similar to Fig. 2c); the relative change in loss value for a set of key 
mutational scans are shown below. For contact frequencies, red (blue) regions 
represent higher (lower) expected frequencies when contrasted with an ideal 
polymer of identical length. The generic increase in loss following mutation 
demonstrates that our solution is highly optimized for the target property, as a 
higher loss corresponds to decreased agreement with the desired behavior.
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our results demonstrate the ability of our model to design IDPs with 
multiple sequence-based constraints.

Programming stimuli-response in IDPs
A key biological function of many IDPs stems from their ability to sense 
and respond to cellular and environmental stimuli such as varying salt 
concentrations, temperature changes, dissolved CO2 levels and pH10,38 
by changing global- or local-chain conformations. We therefore next 
decided to create IDP-based sensors, where we defined sensor function 
as arising from large changes in global conformation (Rg) in response 
to varying external stimuli (Fig. 5a and Supplementary Section 8). Our 
algorithm naturally handles such complex design formulations, which 
require tailored sequence–ensemble–function relationships across 
multiple conditions: for example, a salt-contractor IDP sensor must 
have high and low Rg at low and high salt concentrations, respectively. 
Thus the design optimization must find the sequence that achieves this 
goal simultaneously over both conditions.

We first began by designing sensors that respond to an increase 
in salt concentrations from 150 mM to 450 mM. We model the effect of 
increasing salt concentrations by only changing the screening length 
in the Coulomb pair potential (Supplementary Section 8) and, for 
simplicity, ignore other higher-order effects. By optimizing for a salt 
contractor, we identify a sequence rich in arginines with small clusters 

of interspersed tyrosine and tryptophan residues (Fig. 5b). The weaken-
ing of repulsive interactions between similarly charged arginines with 
salt leads to an effective and modest compaction, as exemplified by a 
poly-arginine sequence of identical length (Supplementary Table 4). 
In our solution, this passive contraction is amplified by the aromatic 
clusters, whose attraction is salt-insensitive. The periodic spacing and 
patterning of aromatic solutions in our designed variant only drives 
compaction under high salt conditions (Fig. 5b). All of the mutants that 
change composition or patterning show increased compaction, except 
for one, but they are no longer as salt-sensitive (Supplementary Table 4, 
Supplementary Fig. 6a and Supplementary Data).

This ability to exploit complex, many-body heteropolymer physics 
is even more dramatic in our salt-expander variant (Fig. 5c), designed to 
increase Rg with increasing salt concentration. Our algorithm converges 
to an expander with three roughly equally sized sequence modules: a 
positively charged N-terminus, a negatively charged C-terminus and 
a linker region that is made of proline spacers interspersed with sticky 
aromatic residues. The weakening of attractive interactions between 
positive and negative residues with salt only drives modest expansion, 
as seen in a K25E25 variant (Supplementary Table 4; 2.2 Å change). Two 
linker features, (1) sticky cation–π interactions with aromatic residues 
and the N-terminus and (2) steric effects from proline residues that 
reduce contact frequency of N/C termini, work in tandem to drive a 
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framework for applying sequence constraints. Following ref. 35, we construct 
a loss function that incorporates arbitrary constraints on the probabilistic 
sequence and overparameterize the input to the optimization problem (the 
sequence representation) via a neural network. b, An example of IDP design 
(n = 50, Rg = 12.5 Å) subject to a constraint requiring a minimum degree of 
sequence disorder as predicted by Metapredict36. The top panel shows the 
simulation-predicted Rg over training epochs. The bottom panel shows the 
annealing of the sequence disorder constraint across the optimization. 
c, Average disorder of optimized sequences (n = 50, five replicates) versus target 
Rg value with (black) and without disorder constraints (grey). Dashed lines 
represent the threshold of enforced disorder constraint. Optimized sequences 
exhibit a Rg within 5 or 10% of target value for constrained or unconstrained 

optimizations. Dots represent mean values and whiskers represent the s.d. d, An 
example of IDP design (n = 50, Rg = 17.5 Å) subject to a constraint that requires 
50% positively charged (R/K) and 50% negatively charged (E/D) residues. 
The constraints (right panels) and the target Rg (left panel) are achieved as 
the probabilistic sequence is annealed to a discrete sequence. e, Rg values of 
optimized sequences are plotted against κ values—a measure of sequence 
blockiness introduced in ref. 37—showing the same inverse relationship reported 
in ref. 37. The insets depict sequence patterning, represented by blue and 
red lines for positive and negative residues, respectively, and show relatively 
interspersed (blocky) IDPs for high (low) values of Rg. Each dot represents the 
most optimized sequence from five trajectories and have an Rg within ~10% of the 
target and charge ratios within ~5% of target.
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salt-sensitive molecular clasp (Fig. 5c) with a nearly 100% change in 
Rg. Removal of any key features—for instance, through reducing steric 
hindrance by P → A mutations, or removing sticky residues—leads to a 
weaker salt response (Supplementary Fig. 6b). Our method therefore 
identifies a balance between salt-sensitive, salt-independent and steric 
features whose coupling transforms into a cooperative large-scale 
stimuli-response. This designed molecular clasp, in turn, sheds light 
on physical mechanisms that underlie sensitive and plastic conforma-
tional ensembles.

Finally, to highlight the generality of our model, we use a simi-
lar approach to construct sensors that respond by contraction or 
expansion to increases in temperature and phosphorylation of serine 
residues (Supplementary Fig. 7, Supplementary Table 3 and Supple-
mentary Section 8). As the underlying force-fields do not accurately 
capture temperature-dependent variations in hydrophobic inter-
actions, the effect sizes predicted by our model are rather small 
(Supplementary Fig. 7d–f). Incorporating temperature-dependent inter-
actions, for instance, in the spirit of ref. 39, into our model framework will 
improve future sensor design. By contrast, we find an increasing range 
in sensor dimension change—and thus response size—with more phos-
phosites (Supplementary Fig. 7a–c). The mechanisms of contraction 
or expansion rely on interactions between phosphorylatable residues 
buried in neighborhoods of positively or negatively charged residues 
(Supplementary Fig. 7a–c). Thus, the addition of negatively charged 
groups following phosphorylation promotes favorable or repulsive 
interactions, leading to downstream change in IDP ensemble size. We 
note that in our simulations, phosphorylation is modeled using phos-
phomimetic substitutions (S → E) that capture charge effects but may 
not fully recapitulate the structural nuances of true phosphorylation.

Binders for disordered substrates
The function of many IDPs is driven by binding to disordered substrates, 
with examples of picomolar-level affinities in highly charged IDPs30,40,41. 
We next asked whether we can design disordered binders for a spe-
cific target substrate? To do this, we modify the forward simulation 
to include both the substrate, whose residue identity is fixed but can 
still sample a variety of conformations, along with a potential bind-
ing ligand whose sequence is learnable (Fig. 6a). Precise calculation 
of binding constants is computationally expensive, often requiring 
sophisticated enhanced sampling techniques. To overcome this, we 
make the following simplifications: (1) strong binders are identified by 
minimizing the average inter-strand distance and (2) a biasing potential 
is used to encourage collection of reference samples that are confined 
to an effective local volume (Supplementary Section 9). These sim-
plifications help identify high-affinity binders but lose the ability to 
measure precise quantitative rates or constants.

We first seek a binder for a homopolymeric positively charged 
substrate R30. Our model identifies a predominantly negatively 
charged ligand (>90% D/E residues, Supplementary Data) as a strong 
binder. Consistent with poly-electrolyte models, we find that pre-
dicted effective interaction coefficients42,43 (Supplementary Section 
9) are highly favorable for unlike-charge mediated substrate–ligand 
interactions (Supplementary Fig. 8c) and unfavorable, as expected, 
for like-charge-mediated substrate–substrate interactions. We next 
identify binders for the low-complexity domain of FUS, a well-studied 
IDP with prominent roles in human physiology and disease44,45 and 
the poly-Q region of Whi3, an IDP with prominent roles in regulating 
nuclear autonomy and cell cycle in yeast46. As shown in Fig. 6b, our opti-
mization leads to an identification of a target binder (Supplementary 
Data). Although both FUS-LC and Whi3 have strong self-affinity44,46, 
effective interaction coefficients predict stronger interactions 
between our optimized binders and their respective substrates 
(Supplementary Fig. 8c) over the homotypic substrate–substrate 
interactions. In unbiased forward simulations, we observe strongly 
enriched intermolecular interactions for all binder-substrate pairs 
(Fig. 6d,e and Supplementary Fig. 8b), indicating strong binding at the 
micromolar concentrations we studied. Across all of the optimizations, 
we find that a sharp change in the learning dynamics (Fig. 6b,c and 
Supplementary Fig. 8a) is concomitant with strong binder identifica-
tion. We expect that future studies will dissect whether this transition 
represents features of the underlying learning protocol, specifically the 
annealing schedule or noisy gradient signal due to limited sampling, or 
reflects the cooperative biophysics of such molecular binding events. 
Overall, our model lays the framework to generate candidate IDP bind-
ers for disordered substrates.

Discussion
Intrinsically disordered proteins and protein regions are biomolecules 
that are found across the tree of life; play critical roles in molecular 
recognition, cellular organization and information processing; and, 
when dysregulated, correlate with pathology. The sequence of an IDP 
encodes for a vast repertoire of interconverting spatial conformations 
that shape their emergent function. De novo design of IDPs with diverse 
and arbitrary properties remains limiting, in large part, due to lack of 
methods to generally invert the underlying sequence–ensemble–func-
tion relationship.

In this paper we introduce a computational framework to discover 
IDPs for a wide variety of target functions by rationally and efficiently 
inverting molecular simulations that capture the underlying sequence–
ensemble relationship (Fig. 1). Using this framework, we first design IDP 
sequences with varying and complex coarse-grained ensemble dimen-
sion properties. Specifically, we design sequences across a range of Rg 
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and Ree (Fig. 2), and with tailored conformational biases such as loops 
and linkers (Fig. 3), properties that have been shown to shape cellular 
function2,30. We next develop a modular strategy to incorporate any 
sequence constraints in the design pipeline. With this, we engineer 
IDPs that are simultaneously compact and disordered, and generate 
sequence patterning variants with the same overall composition but 
differing ensemble dimensions (Fig. 4). With this framework, we next 
design highly sensitive sensors to multiple physicochemical and cellu-
lar stimuli such as salt, temperature and phosphorylation (Fig. 5). These 
designed sensors, in turn, shed light on the physical mechanisms by 
which the balance of competing intramolecular interactions governs 
large conformational changes. Finally, we use this method to identify 
disordered binders for low-complexity substrates (Fig. 6).

Although we focus on the Mpipi and HPS models in this work, a 
major strength of our framework is the flexibility to use alternative 
force-fields or study other physicochemical effects. The recently devel-
oped model of Rauh et al. for simulating phosphorylated IDPs47 offers 
a more realistic force-field to describe phospho-effects. Similarly, 
combining our method with pH-dependent changes in the effective 
charge or protonation state of amino acids offers a route to develop 
pH sensors. Emerging data also indicate that small-molecules can suc-
cessfully target aberrant condensates48 and thus exploring methods 
to marry small-molecule design informed by molecular simulation is 
a broad area of interest. More generally, there is important potential 
to apply the outlined framework to distinct biomolecular sequences 
(proteins, RNA, DNA) with equilibrium sequence–ensemble–property 
relationships that can be predicted by a wide range of techniques span-
ning molecular dynamics, Monte Carlo simulations49, field-theoretical 
approaches50 and thermodynamics-informed models42,43,51.

The framework we propose directly inverts simulation-derived 
sequence–ensemble relationships to drive de novo IDP design with 
tailored single-chain, binding and environmentally specific proper-
ties. A key aspect of this approach is the integration of continuous 
and relaxed sequence representations with molecular simulations, 
inspired by a host of recent efforts that invert analytical calculations 

or machine-learned approximations for biopolymer design35,52,53. Pre-
dictions via our framework, which require experimental tests, are 
fundamentally constrained by the accuracy of the underlying simula-
tions. A key advantage of our approach is the underlying flexibility of 
gradient-based optimization, which in principle, can be leveraged to 
calculate gradients and optimize simulation parameters instead of 
sequence design. Namely, these same methods can be used in combina-
tion with experiments to drive an iterative loop to improve simulation 
accuracy that is benchmarked on multimodal experimental measure-
ments of IDP properties. In a parallel paper we demonstrate how such 
an approach can improve simulation accuracy by fitting the parameters 
of a coarse-grained model of DNA to complex experimental data such 
as melting temperatures and stretch and torsional moduli54.

Incorporation of emerging machine-learning approaches—for 
example, simulation-free generative methods to generate conforma-
tional ensembles55,56; combining alchemical and molecular dynam-
ics simulations for sequence variant design with target single-chain 
properties5,57; and approximate machine-learning models that 
can rapidly invert pre-trained sequence–single-chain property 
relationships23,57—continues to expand the toolbox for protein engi-
neering. Combining physics-based approaches with recent advances in 
differentiable programming holds promise for computational design 
and engineering for a wide variety of biomolecules and their functions.

Limitations of the study
Our paper introduces a framework to design IDPs with tailored equi-
librium sequence–ensemble relationships modeled by simulations. 
First, as we compute gradient estimates via a reweighting scheme that 
relies on knowledge of unnormalized probabilities, our framework in 
its current form does not naturally accommodate far-from-equilibrium 
properties for which state-level probabilities are generally unknown. 
Opportunities to address such a limitation in future works include 
exploiting classic results in non-equilibrium statistical mechanics (for 
example, the Jarzynski equality), jointly learning the parameters of 
the attractor of a dynamical system (similar to actor-critic methods 
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in reinforcement learning) and alternative methods of automatic 
differentiation that sacrifice accuracy for numerical stability and 
memory overhead. Second, the convergence of this approach to niche 
sequence-designs has not been stress-tested and may require further 
algorithmic innovations. A particular challenge for convergence is the 
inequality between ensemble statistics computed via a continuous 
representation versus a distribution of discrete sequences sampled 
from the continuous sequence. Third, we only explored models for 
which the geometry of each particle identity is identical and probing 
models with polydisperse and complex geometries may require fur-
ther methods development. Fourth, although we model increased salt 
concentrations by adjusting the Debye screening length, this approach 
neglects nonlinear and ion-specific effects that would require solving 
the full Poisson–Boltzmann equation. Although this is an often-used 
approximation, this probably limits accuracy of coarse-grained IDP 
modeling. Finally, our method is less appealing for the design of prop-
erties for which machine-learned approximations are comparable in 
accuracy (see the ‘Computational performance and tradeoffs’ section 
in the Methods).

Methods
General framework for optimizing particle identities
Consider a system of n particles in d dimensions, where each particle 
is ascribed one of m possible identities. Let ⃗s ∈ ℝn denote the identities 
of each particle where ⃗s i ∈ {1, 2,⋯ ,m}. Given a potential energy function 
U ∶ ℝn×d → ℝ that depends on the particle identities, ⃗s  determines the 
distribution of states in the canonical ensemble via p( ⃗x ; ⃗s ) ∼exp(−βU( ⃗x ; ⃗s )) 
where β is the inverse thermal energy and ⃗x ∈ ℝn×d . Given some 
state-level observable O ∶ ℝn×d → ℝ, one is typically interested in the 
expected value of O in the entire ensemble, 𝔼𝔼[O( ⃗x )] x⃗∼p(⋅; s⃗ ). Consequently, 
we consider the optimization problem

argmin
s⃗

𝔼𝔼[O( ⃗x )] x⃗∼p(⋅; s⃗ ) (1)

Note that this is equivalent to the maximization or fixed point variants 
of the optimization problem.

We define an optimization framework for equation (1) that: (1) 
is general and makes minimal assumptions about the underlying 
model; (2) operates directly at the level of the model and requires no 
training; (3) yields an optimized probability distribution of identities 
from which discrete identities can be sampled; and (4) can be com-
bined naturally with state-of-the-art machine-learning methods. 
Consider a matrix of particle identities, π ∈ ℝn×m , where πij is the 
probability of the ith particle having identity j and ∑jπij = 1.0 for all i. 
Let S denote the set of all possible discrete vectors of particle identi-
ties with ∣S∣ = mn. We can then define the expected potential energy 
of a state ⃗x  as

𝔼𝔼𝔼U( ⃗x ,π)] = ∑
s⃗∈S

p( ⃗s |π)U( ⃗x ; ⃗s ) (2)

where

p( ⃗s |π) =
n
∏
i=1

πi, s⃗ i
(3)

This yields a corresponding distribution of states in the canonical 
ensemble,

p( ⃗x ,π) ∼ exp(−β𝔼𝔼𝔼U( ⃗x ,π)]) (4)

= exp(−β∑
s⃗∈S

p( ⃗s |π)U( ⃗x ; ⃗s )) (5)

=∏
s⃗∈S

exp [−β (p( ⃗s |π)U( ⃗x ; ⃗s ))] (6)

=∏
s⃗∈S

(exp [−βU( ⃗x ; ⃗s )])
p(s⃗ |π) (7)

∼∏
s⃗∈S

p( ⃗x ; ⃗s )p(s⃗ |π) (8)

Given this generalized probability distribution, we can generalize equa-
tion (1) for the case of probabilistic particle identities:

argmin
π

𝔼𝔼[O( ⃗x )] x⃗≈p(⋅;π) (9)

Note that equation (9) reduces to equation (1) in the case where π is 
one-hot.

Crucially, π is a continuous variable and can be optimized via gradi-
ent descent. Given a stochastic sampler (for example, a Langevin inte-
grator), one can compute ∇π𝔼𝔼[O( ⃗x )] x⃗∼p(×;π) via differentiable trajectory 
reweighting (DiffTRE)28. Consider a set of states { ⃗x 1, ⃗x 2,⋯ , ⃗xT} sampled 
from the Boltzmann distribution defined by equation (4) for a reference 
state matrix π̂. For values of π sufficiently close to π̂  (see next section), 
we define a weight

wi =
exp (−β [U( ⃗x i;π) − U( ⃗x i; π̂)])

∑j exp (−β [U( ⃗x j;π) − U( ⃗x j; π̂)])
(10)

for each ⃗x i. We can then express our expectation in terms of these weights

𝔼𝔼 [O( ⃗x )] ≈ ∑
i
wiO( ⃗x i) (11)

This yields an expression for 𝔼𝔼 [O( ⃗x )] such that ∇π𝔼𝔼 [O( ⃗x )] ≠ 0. Note that 
 wi =

1
T

 in the limit where π = π̂ . Importantly, gradients are not com-
puted through the unrolled trajectory (as in traditional differentiable 
molecular dynamics) but only through the energy function, relieving 
many of the numerical instabilities and memory constraints that 
typically plague differentiable molecular dynamics. This is equiva-
lent to a low-variance REINFORCE gradient estimator by using knowl-
edge of the unnormalized steady-state probabilities to effectively 
integrate over all paths yielding the same equilibrium state. Further-
more, the set of reference states must not be computed at every 
iteration (see the ‘Differentiable Monte Carlo’ section in the Meth-
ods), relaxing the computational cost imposed by running large 
simulations.

In practice, as the rows of π must be normalized, one optimizes a 
set of logits λ ∈ ℝn×m that are normalized in the loss function to yield π 
at each step, that is πi = softmax(λi). As equation (9) reduces to equation 
(1) only when π is one-hot, we anneal π throughout the optimization 
by introducing a temperature term τ to the normalization procedure, 
that is πi = softmax(λi/τ). We find that a simple linear annealing scheme 
using τstart = 1.0 and τend = 0.01 works well in most cases.

In the general case, sampling from the distribution defined by 
equation (2) is intractable because there are mn possible permutations 
of state identities; however, this calculation becomes tractable in the 
case of an energy function in which the total energy is expressed as the 
sum of pairwise energies. Consider such an energy function for a fixed 
set of particle identities ⃗s :

Utot( ⃗x ; ⃗s ) = ∑
i, j

Upair ( ⃗x i, ⃗x j; ⃗s i, ⃗s j) (12)

This can be generalized to the case of continuous particle identities:
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𝔼𝔼𝔼Utot ( ⃗x ;π)] = ∑
i, j
𝔼𝔼𝔼Upair ( ⃗x i, ⃗x j;π)] (13)

where

𝔼𝔼 [Upair( ⃗x i, ⃗x j;π)] = ∑
s⃗ i ,s⃗ j∈m

π(i, ⃗s i)π( j, ⃗s j)

×Upair ( ⃗x i, ⃗x j; ⃗s i, ⃗s j)
(14)

Crucially, all terms in equation (14) are independent and we can there-
fore rewrite 𝔼𝔼𝔼Upair( ⃗x i, ⃗x j;π)] as

𝔼𝔼 [Upair( ⃗x i, ⃗x j;π)] = U⃗ ij ⋅π⃗ ij (15)

where

(U⃗ ij)kl = Upair( ⃗x i, ⃗x j; k, l) (16)

and

π⃗ ij = πi ⊗ πj (17)

where ⊗ denotes the Kronecker product. When performed in serial, 
the complexity of this calculation reduces to 𝒪𝒪(n2m2) and the n2 factor 
can be further reduced by the use of neighbor lists. Crucially, however, 
the entire calculation can be highly parallelized on a modern GPU as 
the terms in equation (13) are independent. Although it is standard for 
coarse-grained models to be pairwise, this formulation could be 
extended to models with k-body interactions where the complexity of 
the expected energy calculation will scale as 𝒪𝒪(nkmk) (before any neigh-
bor list optimizations).

Differentiable Monte Carlo
Unlike a general reinforcement learning environment, we often know 
things about a physical system under study. Importantly, for example, 
we often know the probability distribution of the microstates of a given 
dynamical system. In this section we focus on the simple case of an 
equilibrium system in the canonical ensemble where the probability 
of state ⃗x i is e

−βU( ⃗x i)

Z
, where β is the inverse thermal energy, U( ⃗x i) is the 

potential energy of ⃗x i and Z = ∑je
−βU(x⃗ j) is the partition function.

Consider a set of states sampled from this distribution via some 
control parameters θ, Xθ = { ⃗x 1, ⃗x 2,⋯ ⃗xN} . Note that there are many 
schemes for efficiently sampling from the Boltzmann distribution such 
as standard molecular dynamics and Monte Carlo algorithms, and even 
generative deep learning methods. Examples of θ are parameters of 
the potential energy or parameters of the initial conditions. Via ergo-
dicity, we can compute the expectation of some state-level observable 
O( ⃗x ,θ) as

⟨O( ⃗x ,θ)⟩ x⃗ i∈X =
1
N ∑

i
O( ⃗x i,θ) (18)

This time, our expectation is defined with respect to a set of sam-
pled states (whose probability distribution we know) rather than with 
respect to a set of trajectories (or equivalently, random seeds). When 
formulated in this fashion, our calculation of the expectation has no 
history dependence; we do not care how the states are sampled, only 
that they are sampled from the underlying distribution.

However, we cannot immediately compute an accurate gradient 
of equation (18). Although we know that the relative probabilities of 
each microstate will change as we change θ, we lose this dependence 
in our gradient signal by only considering the final set of sampled states 
as ∇θ

1
N
= 0. To recover this signal, Zhang et al.29 and Thaler and Zavad-

lav28 independently introduced a simple reweighting scheme (termed 

differentiable trajectory reweighting, or DiffTRE by the latter publica-
tion) in which we rewrite equation (18) as

⟨O( ⃗x ,θ)⟩ x⃗ i∈X = ∑
i
wiO( ⃗x i,θ) (19)

where

wi =
pθ( ⃗x i)/pθ̂( ⃗x i)
∑jpθ( ⃗x j)/pθ̂( ⃗x j)

(20)

and θ̂ is the reference potential via which Xθ was sampled. Equation (20) 
only requires unnormalized probabilities as the normalizing factors 
cancel. For example, in the case of the canonical ensemble, equation 
(20) does not require knowledge of the partition function:

wi =
e−β(Uθ( x⃗ i)−Uθ̂( x⃗ i))

∑je
−β(Uθ( x⃗ j)−Uθ̂( x⃗ j))

(21)

Crucially, in the case in which θ = θ̂, wi =
1
N

 but ∇θ log( p( ⃗x i)) ≠ 0, Thaler 
and Zavadlav introduced the notion that reference states collected via 
θ̂ can be reused for small differences between θ and θ̂, but as this dif-
ference grows few states dominate the average and the reference states 
should be resampled. This is captured via an expression for effective 
sample size:

Neff = e
−

N
∑
i=1

wi ln(wi)
(22)

Refer to ref. 29 and ref. 28 for a complete introduction to this method.
This reweighting scheme solves three major problems in differenti-

able programming for dynamical systems. Foremost, it resolves both 
problems related to memory, and numerical instability as gradients are 
no longer computed with respect to unrolled trajectories. However, 
there is a third benefit: the entire sampling procedure does not have to 
be rewritten in an automatic differentiation framework. Instead, one 
only must write the energy function in such a framework. Furthermore, 
objective functions that do not explicitly depend on θ also do not have 
be differentiable, permitting the immediate use of the rich ecosystem 
of libraries that already exist for the analysis of molecular dynamics 
trajectories. This reduces a massive barrier to entry for differentiable 
programming in cases where the unnormalized probability of sampled 
states is known, particularly as it relates to larger and more complex 
code bases.

In the language of stochastic gradient estimators, DiffTRE can 
be regarded as a low-variance REINFORCE estimator. A traditional 
REINFORCE estimator would regard the probability of each state as 
the probability of its corresponding trajectory, drastically inflating 
the variance of the estimator as many trajectories can yield the same 
equilibrium state. DiffTRE permits us to use our knowledge about the 
distribution from which we are sampling in our estimate of the gradient, 
effectively integrating over all trajectories for a given state.

Mpipi force-field
Mpipi is a coarse-grained model of protein–protein and protein–RNA 
interactions for studying biomolecular liquid–liquid phase separa-
tion21. Introduced in 2021, Mpipi has gained widespread popularity 
for the computational study of liquid–liquid phase separation and the 
underlying biophysics58–62. Recent machine-learning methods use Mpipi 
to generate ground-truth training data, with which neural networks are 
trained to either predict ensemble properties or generate sequences 
with target characteristics23,63. Note that such methods for inverse 
design are limited not only because they generate sequences with 
respect to a learned approximation of Mpipi rather than Mpipi itself, 
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but also because in principle designing sequences for a different target 
ensemble property demands an entirely new deep learning model.

In Mpipi, each amino acid monomer is represented a single iso-
tropic sphere. Each amino acid type is assigned a mass, diameter, 
charge and energy scale. Like oxDNA, all interactions are pairwise and 
the potential energy is given by

VMpipi = ∑
nn

Vbond + ∑
other pairs

(Velec + Vpair) (23)

where nn denotes a fixed set of consecutive bonded pairs. Vbond is 
computed as a harmonic bond potential, Velec as a Coulomb term with 
Debye–Hückel electrostatic screening and Vpair as a Wang–Frenkel inter-
action64. The parameters of this potential were fit to reproduce both the 
atomistic potential-of-mean-force calculations, and the bioinformatics 
data. We modulate salt concentration effects through changing ionic 
strength and thus adjusting the Debye screening length in the Coulomb 
term. Although only an approximation, accurately modeling high salt 
concentrations would in principle require solving the nonlinear Pois-
son–Boltzmann equation and more explicit treatments of ion distribu-
tions that are beyond the reach of coarse-grained approaches (refer to 
ref. 21 for complete details of the model and its parameterization, and 
ref. 23 for a description of the modified parameters used in this work).

Simulations
All simulations were performed in JAX-MD27 on an NVIDIA A100 80 GB 
GPU. We used a Langevin thermostat with a timestep of 10 fs at standard 
conditions of 300 K and 150 mM salt concentration unless specified 
otherwise. Forces are computed via automatic differentiation, circum-
venting the need to manually derive forces for the expected Hamilto-
nian over all discrete sequences. Specific simulation parameters (for 
instance, equilibration time, simulation length, sample frequency) 
are provided for each optimization in the Supplementary Informa-
tion. Importantly, the parameters above are designed to ensure that 
simulated trajectories are uncorrelated to initial conformation and 
run long enough to sufficiently sample the equilibrium reference 
ensemble (Supplementary Fig. 2 and Supplementary Section 3). Note 
that although we use molecular dynamics simulations in this work, 
our design framework is agnostic to the method of obtaining refer-
ence states (refer to the ‘Code availability’ section for details on the 
code used).

Computational performance and tradeoffs
For ward simulations of probabilistic sequences scales 
near-linearly with sequence length and only incurs a modest cost 
(Supplementary Fig. 1a,b) over the discrete counterpart on GPUs (see 
Supplementary Section 2). Performance on CPUs is overall much less 
efficient due to lack of parallelism.

More generally, in the following we report key computational 
tradeoffs and considerations in using this method. Each optimization 
for Rg at typical conditions (300 K, 150 mM salt concentration, Lseq = 50) 
in this work requires several hours of compute on a single GPU. By 
contrast, using ALBATROSS—that is, the machine-learned predictor 
used for comparison in Fig. 2—for design, as in ref. 24, only takes tens 
of seconds. We next compare with a method that directly operates 
at the level of molecular simulation that however does not employ a 
continuous sequence space representation. In Pesce and colleagues’ 
design framework, which performs a Monte Carlo search over a discrete 
sequence space, and applies alchemical calculations to minimize the 
need to re-simulate, a representative optimization requires 4,500 
iterations and 20 days57.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All optimized sequences are provided in the Supplementary Data 1. 
Source data are provided with this paper.

Code availability
The complete codebase is available at the following GitHub repository: 
https://github.com/rkruegs123/idp-design. This repository includes a 
notebook containing a scaffold of a simple optimization for a custom 
state-level property. A snapshot of this repository, including the full 
source code and corresponding documentation, has also been archived 
on Zenodo at https://doi.org/10.5281/zenodo.15311353 (ref. 65).
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