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The design of folded proteins has advanced substantially in recent years.
However, many proteins and protein regions are intrinsically disordered and
lack astable fold, that s, the sequence of anintrinsically disordered protein

(IDP) encodes a vast ensemble of spatial conformations that specify its
biological function. This conformational plasticity and heterogeneity makes
IDP design challenging. Here we introduce a computational framework for
de novo design of IDPs through rational and efficient inversion of molecular
simulations that approximate the underlying sequence-ensemble
relationship. We highlight the versatility of this approach by designing IDPs
with diverse properties and arbitrary sequence constraints. These include
IDPs with target ensemble dimensions, loops and linkers, highly sensitive
sensors of physicochemical stimuli, and binders to target disordered
substrates with distinct conformational biases. Overall, our method
provides a general framework for designing sequence-ensemble-function
relationships of biological macromolecules.

The basis of biomolecular function is often specified by a sequence
that encodes an ensemble of 3D conformations'. A prominent exam-
pleisintrinsically disordered protein regions (IDPs), which are found
in most living organisms and play key roles in diverse cellular func-
tions including transcription, cell signaling, cellular immunity and
translation’™. Intrinsically disordered protein regions lack a stable
3D structure, they instead dynamically interconvert between a large
range of non-random conformations®” whose local and global proper-
ties shape cellular functions? Intrinsically disordered protein regions
facilitate molecular recognition through embedded short linear motifs®
and fuzzy interactions with multiple targets?, and when tethered as
intervening linkers or spacers, they modulate interactions between
adjacent folded-domains’. The conformational plasticity that underlies
IDPs is highly sensitive to physicochemical and environmental con-
texts, and thus they often function as intracellular sensors'. Further,
IDPs regulate assembly of higher-order biomolecular assemblies and
condensates" ™, often through low-affinity multivalent interactions,

which play centralrolesin cellular signaling and information process-
ing. Finally, dysregulation of IDPs and IDP-dependent interactions is
increasingly correlated with multiple pathological states™ . There is
thuswidespread interestin designing IDPs with tailored functions for
avariety of roles in human health and industry.

Despite recent advances in protein structure design enabled
by the Protein Data Bank (PDB) and machine learning'®™", these
computational methods remain limited in their ability to design
disordered proteins. Structures of IDPs are not characterized by
single stable folds, they instead occupy a vast ensemble of dynamic
configurations. Recent developments in coarse-grained molecular
simulations have successfully predicted ensemble properties of
IDPs?°22, These simulations produce training data for approximate
machine-learning models that predict particular properties®* (for
example, the radius of gyration and polymer exponents) and can
be subsequently inverted for design®. Although each method has
found success, using separate algorithms for the forward and inverse
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Fig.1|Method for inverse design of IDPs. a, The amino acid sequence of an

IDP encodes for an ensemble of dynamic 3D conformation structures, which
determine properties shaping molecular and cellular functions. b, A discrete IDP
sequence (a vector of length n, where each position is typically a categorically
represented amino acid character) is relaxed to a continuous, probabilistic
sequence representation 17 (a matrix of size n x 20). Here, the (i, ) entry of m

is the probability of residue at position i being amino acid;. c. Tomodel the

forward sequence-ensemble relationship, we simulate the probabilistic
sequence through coarse-grained molecular dynamics simulations, defining
the Hamiltonian of the system as the expected Hamiltonian over all sequences
(refer to the ‘General framework for optimizing particle identities’ sectionin
the Methods). To invert this relationship for sequence design, we optimize this
probabilistic sequence mviagradient descent and anneal to a discrete sequence
through the optimization.

problems reduces accuracy and generalizability to different target
properties and force-field parameters. It would be much more pref-
erable to directly invert the molecular simulations that model the
sequence-ensemble relationship.

In this paper we introduce an algorithmic approach to design
IDPs with tailored properties by inverting molecular simulations. Our
framework uses gradient-based optimization on molecular simulations
to design sequences with arbitrary equilibrium properties—bridging
machine-learning technology with ideas from statistical physics. We
employ this method to engineer IDP sequences for a wide range of
ensemble dimensions of varying complexity, including highly opti-
mized loops and linkers. Our framework naturally accommodates
arbitrary sequence constraints, which we highlight through the design
of sequence patterning variants with the same composition but distinct
ensemble properties. We then construct IDP-based sensors that are
sensitive to salt concentrations, temperature and phosphorylation.
Finally, we design candidate IDP binders for highly disordered biologi-
cal and synthetic substrates. Of note, the accuracy of our predictions
is limited by the accuracy of simulation parameters that describe IDP
sequence-ensemble relationships; our contribution is to show how
to find optimal sequences given a potential. Although our proposed
method is, in principle, potential-agnostic, it will benefit from the
continued iteration between force-field development and experiment.
Overall, our paper outlines a flexible strategy for de novo IDP design
that can be generalized to engineer sequence-ensemble-function
relationships for diverse biopolymers.

Results

Model formulation

Rational de novo design of IDPs requires two key ingredients: (1) area-
sonably accurate forward model of the sequence-ensemble-function
paradigm (Fig.1a) and (2) analgorithm toinvert this through directed
search of sequence space towards a desired functional property.
Over the past few years, coarse-grained molecular simulations with
custom-pair potentials have made dramatic improvements*>** in
predicting effective ensemble properties of IDPs. Here we focus on
molecular dynamics simulations using 1 AA =1bead coarse-graining
with the Mpipi-GG force-field (refer to the ‘Mpipi force-field’ section
in the Methods and Supplementary Section 1)*"%,

Our key innovation is the development of a differentiable algo-
rithmicframework toinvert the simulation-based sequence-ensemble
relationships. To do this, we leverage recent advances in differentiable
programming and stochastic gradient estimation” 2’ to compute the
gradientofaloss functionthat dependsonany set of ensemble-averaged
properties: dsqL((PS™),(P5™), ), where PS™ denotes the ith
state-level property. As this quantity is only well-defined for smooth
variable changes, we use a continuous representation of the sequence
that is amenable to simulation and parallelization on GPUs (see the
‘Computational performance and tradeoffs’ section in the Methods).
Forasequence of L residues, this continuous probabilistic representa-
tion (Fig. 1b), t=£(A), is defined by logits A of size L x 20. The residue
identity atevery siteis characterized by anormalized probability vector
over the different types of amino acids. A particular discrete sequence
corresponds to a one-hot encoding, meaning each position is repre-
sented by a vector of length 20 with all entries but one being 0. In
general, ensemble-averaged predictions are not identical to predic-
tions from a distribution of discrete sequences sampled from the same
distribution (see equation (4) and Supplementary Fig. 3).

Although, in principle, libraries such as JAX-MD* enable gradi-
ent calculation over unrolled molecular dynamics trajectories, this
is slow, scales poorly with system size and is plagued by numerical
instability (Supplementary Fig.1and Supplementary Section 2). To
address this, we expand on a perturbative calculation developed
independently by Zhang et al.”” and Thaler and Zavadlav? to calcu-
late the gradient with respect to mfrom a set of states sampled from
the equilibrium Boltzmann distribution. Correspondingly, forward
molecular dynamics simulations are set up (see the ‘Simulations’ sec-
tioninthe Methods) to ensure equilibration and broad sampling of
thereference conformational repertoire (Supplementary Fig.2 and
Supplementary Section 2). Employing this calculation provides con-
siderable speed and accuracy increases in gradient estimation and
allows re-use of simulation snapshots for multiple sequence updates.
Finally, we incorporate an annealing procedure that gradually forces
mtobecomeincreasingly discrete through the optimization (Fig. 1c;
refer also to the ‘General framework for optimizing particle identi-
ties’ sectionin the Methods). Unless otherwise specified, we initial-
ize all optimizations with a uniform distribution. Once optimized,
target properties are evaluated and validated with separate, longer
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Fig.2|Designing IDPs with varying ensemble dimensions. a, We use the
framework defined in Fig.1for design of IDPs with defined ensemble-averaged
physical dimensions, specifically, R, and R... b, An example optimization to
designanIDP of length n =50 with R, = 20 A. The top panel represents the R,
from the simulated probabilistic sequence and the bottom panel represents

the average sequence entropy at each position. Highlighted points (in pink)
represent approximately the start, mid-point and end of the optimization. ¢, The
evolution of the probabilistic sequence throughout the optimization depicted
inb at highlighted points accompanied by a characteristic conformationin a
box of side a =75 A. Eachresidue is colored differently and the column height

Target R, (A) .
Iteration

corresponding to each residue position is the likelihood of being each residue.
The probabilistic sequence isinitialized as a uniform distribution of sequences,
with eachresidue having an equal probability at each position, and the final
sequence is nearly discrete. d, Each panel shows results for a set of optimizations,
with each point comparing the predicted versus target ensemble dimension

(R orR,) for a particular IDP sequence. The different panels highlight solutions
for different sequence lengths (n = 50, 75) and for different force-fields (Mpipi-
GG, left two panels; HPS, right two panels). e, The optimization trajectory for a
sequence of length n = 50 for target R, = 35 A in which ALBATROSS under-values
the R, of the final optimized sequence by -4 A.

simulations of the entirely discrete designed sequence (Supplemen-
tary Section 3).

Designing IDPs with varying ensemble dimensions
Ensemble-averaged dimensions of an IDP, for example, the radius
of gyration (R,) or the end-to-end distance (R,.), are coarse-grained
metrics that reveal conformational biases that can correlate with bind-
ing and emergent phase behavior*****', We therefore first set out to
design an IDP of fixed sequence length (n = 50) with a target dimen-
sion of (R,) =20 A. We then update rin the direction of the desired
(R) while simultaneously annealing—albeit gradually—towards a dis-
crete sequence (Fig. 2c). Our routine converges (over 50 epochs and
2.5honan NVIDIA A100 GPU) to a sequence (Fig. 2b, Supplementary
Dataand Supplementary Section 3) that explores arange of conforma-
tions (Supplementary Fig. 3) with an ensemble-averaged R, of -20.1 A.
Re-running the optimization with varying random seeds leads to dif-
ferent sequences with similar values of R, highlighting the ability
of our approach to identify multiple sequences that exhibit similar
ensemble-averaged properties (Supplementary Fig. 3 and Supple-
mentary Data).

Withthis framework, we are able to generate sequences of multiple
lengths (n =50, n=75)acrossawide R, range (Fig. 2d). When we change
the loss to correspond to a different physical property, that is, the
end-to-endradius or R..—adimension that providesinsightsinto linker
functionin multi-domain proteins’—we are able to design IDPs across
awide R, range (Fig. 2d and Supplementary Section 4). Predictions

of Ry and R, for designed sequences from the coarse-grained Mpipi
model broadly correlate (Supplementary Fig. 4) withmore fine-grained
all-atom simulations (the GB99dms force-field is taken from ref. 32; see
also Supplementary Section 5).

We find that the optima we obtain using this method are more
accurate than those obtained with a pure machine-learned predictor
derived from Mpipi-GG simulations (ALBATROSS)*, when compared
against the underlying molecular dynamics simulations for the ground
truth (Supplementary Table1). As an example, asequence we generate
(n=50, (Ry) =32.55 A, (Ry) ™" = 32.5 A) isincorrectly predicted by
ALBATROSS to be offby ~4 A (Fig. 2e). A core strength of our algorithm
isthat by directly optimizing over simulations, we can explore awider
design space that is not subject to approximations underlying
machine-learned descriptors. This means that more generally, our
method can be flexibly applied to any force-field without requiring
further data generation, architectural engineering, fine tuning or
retraining of existing models.

We demonstrate this by designing IDPs of particular ensemble
dimensions using the same method but with the HPS force-field*’—
a different commonly used pair potential (Fig. 2d). Although each
force-field incorporates distinct biophysical priors, we find a broad
correlation in predicted R, for all sequences between the force-field
they were optimized on as well as the one they were not optimized with
(Supplementary Section 5and Supplementary Fig. 4a). Together, our
method provides a versatile approach to identify IDPs with specified
conformation-averaged single-chain properties.
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Fig.3|Shaping global conformational biases through loops and linker IDPs.
a, Agraphicalillustration of ensemble coupling of R, and R,.., highlighting linear
relationships for ideal homopolymer chains (Rg = Ree/A/6) and decoupled
off-diagonal points for loops and linkers. Below, we show the loss we employ for
theloop and linker design problems, expressed to maximize the decoupling
betweenR,and Ree/\/g. b,c, For the optimized loop (b) and linker (c) sequences,
we depict the normalized contact frequencies computed over a trajectory.

Representative configurations colored by amino acid identity are shown to the
right (similar to Fig. 2c); the relative change in loss value for a set of key
mutational scans are shown below. For contact frequencies, red (blue) regions
represent higher (lower) expected frequencies when contrasted with anideal
polymer ofidentical length. The genericincrease in loss following mutation
demonstrates that our solution is highly optimized for the target property, asa
higher loss corresponds to decreased agreement with the desired behavior.

De novo design of loops and linkers

We next asked whether we can construct IDPs with more complex
descriptors of their conformational ensembles? In particular, we
focused on designing sequence variants that maximized decoupling
between R, and R, as opposed to the linear scaling found in ideal
polymers, unfolded proteins, and many naturally occurring IDPs***,
We reasoned that such sequence variants could potentially
represent optimally designed loops (R, — Ree/\/g >> 0) or linkers
(Rg — Ree/\/g << 0) (Fig.3aand Supplementary Section 6).

For a sequence of fixed length (L = 50), we identify highly opti-
mized loop and linker sequences with finely tuned mechanistic prop-
erties. Our loop optimization yields a low-complexity sequence with
sticky aromatic patches comprising tryptophans (W) and tyrosines (Y)
ateither terminus—interspersed by prolines (P) and arginines (A) that
kink out the intervening sequence—as highlighted by the normalized
contact frequency maps and representative conformations (Fig. 3b).
Although the underlying force-field predicts that W-W interactions
are stickier and perhaps should thus drive stronger loops, mutating
the mixture of Y/Wsin our solution to either all Ysor Wsleadsto aless
optimalloop (Fig.3b and Supplementary Table 2). Similarly, mutational
scansofeachresidue typeinto alanines or choosingless-complexlosses
lead to suboptimal loops (Supplementary Table 2)—generically reflect-
ing an inability of simple sequence perturbations to decouple reduc-
tions in end-to-end distances from concomitant reductions in chain
R,. The optimal loop architecture here hence arises from tradeoffs
between overall sequence composition and patterning and emergent
many-body interactions. When optimizing for linkers, we find that
low-complexity sequences that intersperse prolines amongst a back-
bone of positively charged arginines, maximally decoupling R, from
R, (Fig. 3c). This is largely expected as like-charges have short-range
repulsive interactions; simple mutation scans are consistent with this
intuition (Fig. 3c). Interestingly, we still identify a slightly improved
linker variant in which lysines (K) are substituted with arginines (R).
Overall, these design problems reinforce the ability of our algorithm to
navigate high-dimensional sequence-spaces while balancing tradeoffs
inensemble properties.

Engineering IDPs with arbitrary sequence constraints

Animportantaspect of protein designis to engineer molecules thatare
subject to sequence constraints. For IDPs, such constraints could span
requirements for highly disordered sequences, particular sequence

compositions or motifs, or any other combinatorial sequence fea-
tures. To incorporate arbitrary constraints, we generically expand
our algorithmic framework by building on our previous work®. First,
constraints are enforced through leaky ReLu functions multiplying
thetarget property loss, resulting in gradients that navigate sequence
space while maintaining constraints (Fig. 4a). Second, instead of
directly optimizing over the sequence, we optimize over the weights
ofapre-trained and fully connected neural network that parametrizes
m(Fig.4a). Together, this presents amodular and generalizable strat-
egy tonavigate constrained high-dimensional sequence spaces (Sup-
plementary Section 7).

With this framework, we first set out to identify IDPs that are
constrained to high disorder. We leverage a recent machine-
learning-based disorder predictor, Metapredict®, to measure and
constrain disorder (Supplementary Section 7). Importantly, as the
disorder prediction (and requirement) is only exact for a discrete
sequence, the disorder contribution to the loss is gradually made
more stringent over the optimization procedure (Fig. 4b). Design-
ing compact proteins (meaning those with a small R,) without any
constraints tends to reveal highly hydrophobic proteins that are
typically predicted to be well-folded and not disordered (see Fig. 4¢).
Whenwe incorporate our disorder constraint, we are able to identify
sequences that are simultaneously compact and highly disordered
(Fig. 4b) across arange of R, (Fig. 4¢).

We next set out to design IDPs with compositional constraints.
Motivated by a past work”, we explored the effect of sequence pattern-
ing (particularly blockiness) on ensemble dimensions while keeping
overall composition fixed at 50% positive and negative charges. To
perform this multi-constraint optimization (Fig. 4d), we pre-train the
overparameterized fully connected neural network to output a set of
logits corresponding to the target charge distribution, and then use
thisin our constrained optimization procedure. Consistent with past
predictions, we find aninverse relationship between ensemble dimen-
sions and sequence blockiness (Fig. 4¢).

Furthermore, to demonstrate the flexibility of our framework to
accommodate experimental constraints, all subsequently designed
sensors (Fig. 5 and Supplementary Fig. 7) are constrained toinclude a
start codonamino acid and an N-terminal 6xHis-tag for affinity purifica-
tion. This constraintis enforced by setting the first sevenrows of mtoa
one-hotarray denoting the MHHHHHH subsequence. In principle, our
framework could accommodate any such fixed subsequence. Together,
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Fig. 4 | Engineering IDPs with arbitrary sequence constraints. a, Our
framework for applying sequence constraints. Following ref. 35, we construct
aloss function thatincorporates arbitrary constraints on the probabilistic
sequence and overparameterize the input to the optimization problem (the
sequence representation) viaa neural network. b, An example of IDP design
(n=50,R,=12.5 A) subject to a constraint requiring aminimum degree of
sequence disorder as predicted by Metapredict®. The top panel shows the
simulation-predicted R, over training epochs. The bottom panel shows the
annealing of the sequence disorder constraint across the optimization.

¢, Average disorder of optimized sequences (n = 50, five replicates) versus target
R, value with (black) and without disorder constraints (grey). Dashed lines
represent the threshold of enforced disorder constraint. Optimized sequences
exhibita R, within 50r10% of target value for constrained or unconstrained

optimizations. Dots represent mean values and whiskers represent the s.d. d, An
example of IDP design (n =50, R, =17.5 A) subject to a constraint that requires
50% positively charged (R/K) and 50% negatively charged (E/D) residues.

The constraints (right panels) and the target R, (left panel) are achieved as

the probabilistic sequence is annealed to a discrete sequence. e, R, values of
optimized sequences are plotted against k values—a measure of sequence
blockiness introduced in ref. 37—showing the same inverse relationship reported
inref. 37. The insets depict sequence patterning, represented by blue and

red lines for positive and negative residues, respectively, and show relatively
interspersed (blocky) IDPs for high (low) values of R,. Each dot represents the
most optimized sequence from five trajectories and have an R, within -10% of the
target and charge ratios within -5% of target.

our results demonstrate the ability of our model to design IDPs with
multiple sequence-based constraints.

Programming stimuli-response in IDPs

Akeybiological function of many IDPs stems from their ability to sense
andrespond to cellular and environmental stimuli such as varying salt
concentrations, temperature changes, dissolved CO, levels and pH'***
by changing global- or local-chain conformations. We therefore next
decided to create IDP-based sensors, where we defined sensor function
as arising from large changes in global conformation (R,) in response
tovarying external stimuli (Fig. 5a and Supplementary Section 8). Our
algorithm naturally handles such complex design formulations, which
require tailored sequence-ensemble-function relationships across
multiple conditions: for example, a salt-contractor IDP sensor must
have high and low R, atlow and highsalt concentrations, respectively.
Thus the design optimization must find the sequence that achieves this
goal simultaneously over both conditions.

We first began by designing sensors that respond to an increase
insalt concentrations from150 mM to 450 mM. We model the effect of
increasing salt concentrations by only changing the screening length
in the Coulomb pair potential (Supplementary Section 8) and, for
simplicity, ignore other higher-order effects. By optimizing for a salt
contractor, weidentify asequencerichinarginines with small clusters

ofinterspersed tyrosine and tryptophanresidues (Fig. 5b). The weaken-
ing of repulsiveinteractions between similarly charged arginines with
salt leads to an effective and modest compaction, as exemplified by a
poly-arginine sequence of identical length (Supplementary Table 4).
In our solution, this passive contraction is amplified by the aromatic
clusters, whose attractionis salt-insensitive. The periodic spacing and
patterning of aromatic solutions in our designed variant only drives
compactionunder high salt conditions (Fig. 5b). All of the mutants that
change composition or patterning show increased compaction, except
forone, butthey are nolonger as salt-sensitive (Supplementary Table 4,
Supplementary Fig. 6a and Supplementary Data).

This ability to exploit complex, many-body heteropolymer physics
is even more dramaticin our salt-expander variant (Fig. 5c), designed to
increase R, withincreasing salt concentration. Our algorithm converges
to an expander with three roughly equally sized sequence modules: a
positively charged N-terminus, a negatively charged C-terminus and
alinker region thatis made of proline spacers interspersed with sticky
aromatic residues. The weakening of attractive interactions between
positive and negative residues with salt only drives modest expansion,
asseen in a K,sE,; variant (Supplementary Table 4; 2.2 A change). Two
linker features, (1) sticky cation-minteractions with aromatic residues
and the N-terminus and (2) steric effects from proline residues that
reduce contact frequency of N/C termini, work in tandem to drive a
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depending on whether we are designing a contractor or expander. b,c, Optimized
contractor (b) and expander (c) sequences with contact frequency maps at low
and high salt concentrations computed from representative trajectories; R, is
reported below. For contact frequencies, red (blue) regions represent higher
(lower) expected frequencies when normalized with an ideal polymer of identical
length.

salt-sensitive molecular clasp (Fig. 5¢) with a nearly 100% change in
R,.Removal of any key features—for instance, through reducing steric
hindrance by P > Amutations, or removing sticky residues—leadstoa
weaker salt response (Supplementary Fig. 6b). Our method therefore
identifies abalance between salt-sensitive, salt-independent and steric
features whose coupling transforms into a cooperative large-scale
stimuli-response. This designed molecular clasp, in turn, sheds light
on physical mechanisms that underlie sensitive and plastic conforma-
tional ensembles.

Finally, to highlight the generality of our model, we use a simi-
lar approach to construct sensors that respond by contraction or
expansion to increases in temperature and phosphorylation of serine
residues (Supplementary Fig. 7, Supplementary Table 3 and Supple-
mentary Section 8). As the underlying force-fields do not accurately
capture temperature-dependent variations in hydrophobic inter-
actions, the effect sizes predicted by our model are rather small
(Supplementary Fig. 7d-f).Incorporating temperature-dependentinter-
actions, forinstance, inthe spirit of ref. 39, into our model framework will
improve future sensor design. By contrast, we find an increasing range
insensor dimension change—and thus response size—with more phos-
phosites (Supplementary Fig. 7a-c). The mechanisms of contraction
or expansion rely on interactions between phosphorylatable residues
buried in neighborhoods of positively or negatively charged residues
(Supplementary Fig. 7a-c). Thus, the addition of negatively charged
groups following phosphorylation promotes favorable or repulsive
interactions, leading to downstream change in IDP ensemble size. We
note that in our simulations, phosphorylation is modeled using phos-
phomimetic substitutions (S - E) that capture charge effects but may
not fully recapitulate the structural nuances of true phosphorylation.

Binders for disordered substrates

The functionof many IDPs is driven by binding to disordered substrates,
with examples of picomolar-level affinities in highly charged IDPs**4%*,
We next asked whether we can design disordered binders for a spe-
cific target substrate? To do this, we modify the forward simulation
toinclude both the substrate, whose residue identity is fixed but can
still sample a variety of conformations, along with a potential bind-
ing ligand whose sequence is learnable (Fig. 6a). Precise calculation
of binding constants is computationally expensive, often requiring
sophisticated enhanced sampling techniques. To overcome this, we
make the following simplifications: (1) strong binders are identified by
minimizing the average inter-strand distance and (2) abiasing potential
isused to encourage collection of reference samples that are confined
to an effective local volume (Supplementary Section 9). These sim-
plifications help identify high-affinity binders but lose the ability to
measure precise quantitative rates or constants.

We first seek a binder for a homopolymeric positively charged
substrate R;,. Our model identifies a predominantly negatively
charged ligand (>90% D/E residues, Supplementary Data) as a strong
binder. Consistent with poly-electrolyte models, we find that pre-
dicted effective interaction coefficients*>** (Supplementary Section
9) are highly favorable for unlike-charge mediated substrate-ligand
interactions (Supplementary Fig. 8c) and unfavorable, as expected,
for like-charge-mediated substrate-substrate interactions. We next
identify binders for the low-complexity domain of FUS, a well-studied
IDP with prominent roles in human physiology and disease**** and
the poly-Q region of Whi3, an IDP with prominent roles in regulating
nuclearautonomy and cell cycle in yeast*®. As shown in Fig. 6b, our opti-
mization leads to anidentification of atarget binder (Supplementary
Data). Although both FUS-LC and Whi3 have strong self-affinity***°,
effective interaction coefficients predict stronger interactions
between our optimized binders and their respective substrates
(Supplementary Fig. 8c) over the homotypic substrate-substrate
interactions. In unbiased forward simulations, we observe strongly
enriched intermolecular interactions for all binder-substrate pairs
(Fig. 6d,e and Supplementary Fig. 8b), indicating strong binding at the
micromolar concentrations we studied. Across all of the optimizations,
we find that a sharp change in the learning dynamics (Fig. 6b,c and
Supplementary Fig. 8a) is concomitant with strong binder identifica-
tion. We expect that future studies will dissect whether this transition
represents features of the underlying learning protocol, specifically the
annealing schedule or noisy gradient signal due to limited sampling, or
reflects the cooperative biophysics of suchmolecular binding events.
Overall, our model lays the framework to generate candidate IDP bind-
ers for disordered substrates.

Discussion

Intrinsically disordered proteins and protein regions are biomolecules
that are found across the tree of life; play critical roles in molecular
recognition, cellular organization and information processing; and,
whendysregulated, correlate with pathology. The sequence of an IDP
encodes foravast repertoire of interconverting spatial conformations
that shape their emergent function. De novo design of IDPs with diverse
and arbitrary properties remains limiting, in large part, due to lack of
methods to generally invert the underlying sequence-ensemble-func-
tion relationship.

Inthis paper we introduce acomputational framework to discover
IDPs for awide variety of target functions by rationally and efficiently
inverting molecular simulations that capture the underlying sequence-
ensemble relationship (Fig.1). Using this framework, we first design IDP
sequences with varying and complex coarse-grained ensemble dimen-
sion properties. Specifically, we design sequences across arange of R,
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Fig. 6 | Designing IDP binders for disordered substrates. a, For agiven
substrate, binder design involves finding an IDP sequence that minimizes the
interstrand center-of-mass distance between conformationally fluctuating IDPs.
b, The optimization of abinder of length n = 30 for R, is depicted by convergence
tolow interstrand distance over the trajectory. ¢, The optimization of a binder of
length n =50 for FUS-LC (n =169) is depicted by convergence to low interstrand
distance over the trajectory. d,e. Normalized contact frequency maps for R, (d)

and FUS-LC (e) are shown, highlighting both intramolecular and intermolecular
interactions. For contact frequencies, red/blue regions represent higher/lower
expected frequencies when contrasted with anideal polymer of total length
ofbinder + substrate. Representative bound snapshots of the binder (green)
and substrate (grey) are depicted to the right of the panel; lines within the box
separate the substrate and binder.

and R, (Fig. 2), and with tailored conformational biases such as loops
and linkers (Fig. 3), properties that have been shown to shape cellular
function**°, We next develop a modular strategy to incorporate any
sequence constraints in the design pipeline. With this, we engineer
IDPs that are simultaneously compact and disordered, and generate
sequence patterning variants with the same overall composition but
differing ensemble dimensions (Fig. 4). With this framework, we next
design highly sensitive sensors to multiple physicochemical and cellu-
lar stimulisuch as salt, temperature and phosphorylation (Fig. 5). These
designed sensors, in turn, shed light on the physical mechanisms by
which the balance of competing intramolecular interactions governs
large conformational changes. Finally, we use this method to identify
disordered binders for low-complexity substrates (Fig. 6).

Although we focus on the Mpipi and HPS models in this work, a
major strength of our framework is the flexibility to use alternative
force-fields or study other physicochemical effects. The recently devel-
oped model of Rauh et al. for simulating phosphorylated IDPs* offers
amore realistic force-field to describe phospho-effects. Similarly,
combining our method with pH-dependent changes in the effective
charge or protonation state of amino acids offers a route to develop
pHsensors. Emerging data also indicate that small-molecules can suc-
cessfully target aberrant condensates*® and thus exploring methods
to marry small-molecule design informed by molecular simulation is
abroad area of interest. More generally, there is important potential
to apply the outlined framework to distinct biomolecular sequences
(proteins, RNA, DNA) with equilibrium sequence-ensemble-property
relationships that can be predicted by awide range of techniques span-
ning molecular dynamics, Monte Carlo simulations*, field-theoretical
approaches®® and thermodynamics-informed models*>*°",

The framework we propose directly inverts simulation-derived
sequence-ensemble relationships to drive de novo IDP design with
tailored single-chain, binding and environmentally specific proper-
ties. A key aspect of this approach is the integration of continuous
and relaxed sequence representations with molecular simulations,
inspired by a host of recent efforts that invert analytical calculations

ormachine-learned approximations for biopolymer design®°>**. Pre-
dictions via our framework, which require experimental tests, are
fundamentally constrained by the accuracy of the underlying simula-
tions. A key advantage of our approach is the underlying flexibility of
gradient-based optimization, which in principle, can be leveraged to
calculate gradients and optimize simulation parameters instead of
sequence design. Namely, these same methods canbe used in combina-
tionwithexperimentsto drive aniterative loop toimprove simulation
accuracy thatisbenchmarked on multimodal experimental measure-
ments of IDP properties. Ina parallel paper we demonstrate how such
anapproach canimprove simulation accuracy by fitting the parameters
ofacoarse-grained model of DNA to complex experimental datasuch
as melting temperatures and stretch and torsional moduli**.
Incorporation of emerging machine-learning approaches—for
example, simulation-free generative methods to generate conforma-
tional ensembles®*°; combining alchemical and molecular dynam-
ics simulations for sequence variant design with target single-chain
properties®’; and approximate machine-learning models that
can rapidly invert pre-trained sequence-single-chain property
relationships**’—continues to expand the toolbox for protein engi-
neering. Combining physics-based approaches with recentadvancesin
differentiable programming holds promise for computational design
and engineering for awide variety of biomolecules and their functions.

Limitations of the study

Our paper introduces a framework to design IDPs with tailored equi-
librium sequence-ensemble relationships modeled by simulations.
First,as we compute gradient estimates via areweighting scheme that
relies on knowledge of unnormalized probabilities, our framework in
its current form does not naturally accommodate far-from-equilibrium
properties for which state-level probabilities are generally unknown.
Opportunities to address such a limitation in future works include
exploiting classic results in non-equilibrium statistical mechanics (for
example, the Jarzynski equality), jointly learning the parameters of
the attractor of a dynamical system (similar to actor-critic methods
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in reinforcement learning) and alternative methods of automatic
differentiation that sacrifice accuracy for numerical stability and
memory overhead. Second, the convergence of this approach to niche
sequence-designs has not been stress-tested and may require further
algorithmicinnovations. A particular challenge for convergenceis the
inequality between ensemble statistics computed via a continuous
representation versus a distribution of discrete sequences sampled
from the continuous sequence. Third, we only explored models for
which the geometry of each particle identity is identical and probing
models with polydisperse and complex geometries may require fur-
ther methods development. Fourth, although we modelincreased salt
concentrations by adjusting the Debye screening length, thisapproach
neglectsnonlinear andion-specific effects that would require solving
the full Poisson-Boltzmann equation. Although this is an often-used
approximation, this probably limits accuracy of coarse-grained IDP
modeling. Finally, our method s less appealing for the design of prop-
erties for which machine-learned approximations are comparable in
accuracy (see the ‘Computational performance and tradeoffs’ section
in the Methods).

Methods

General framework for optimizing particle identities

Consider a system of n particles in d dimensions, where each particle
isascribed one of m possibleidentities. Let § € R"denote the identities
of eachparticlewhere §; € {1,2, --- ,m}. Given a potential energy function
U : R™ - rthatdependsonthe particleidentities, s determines the
distribution of statesin the canonicalensemble via pX';S) ~exp(—BUX;S))
where S is the inverse thermal energy and x € R™. Given some
state-level observable 0 : R™*? = R, one is typically interested in the
expected valueof Ointhe entire ensemble, E[0()| Consequently,

- s X~p(:8Y
we consider the optimization problem

@

argmin E[Oo?)];“p(';})
S

Note that thisis equivalent to the maximization or fixed point variants
of'the optimization problem.

We define an optimization framework for equation (1) that: (1)
is general and makes minimal assumptions about the underlying
model; (2) operates directly at the level of the model and requires no
training; (3) yields an optimized probability distribution of identities
from which discrete identities can be sampled; and (4) can be com-
bined naturally with state-of-the-art machine-learning methods.
Consider a matrix of particle identities, m € R™™, where m; is the
probability of the ith particle having identity,jand } 7, = 1.0 for all i.
Let Sdenote the set of all possible discrete vectors of particle identi-
ties with |S| = m". We can then define the expected potential energy
of astate x as

E[UK, m)] = . pGImMUK:S) 2)
ses
where
pGIm =[] m;, 3)
i=1

This yields a corresponding distribution of states in the canonical
ensemble,

p&, m) ~ exp(-BE[UK, m)]) @)

=exp (—ﬁ . p6 |rr)Uc?;§)) )

ses

= [Texp [-B(p6ImUE:))] ©

ses

=TT (exp[-BUa:)* "

Ses

@

~ oSy 8)

ses

Given this generalized probability distribution, we can generalize equa-
tion (1) for the case of probabilistic particle identities:
9

argrtrnin [E[O(x)]}zp(.;”)

Note that equation (9) reduces to equation (1) in the case where  is
one-hot.

Crucially, mis a continuous variable and canbe optimized viagradi-
entdescent. Given astochastic sampler (forexample, aLangevininte-
grator), one can compute V,E[0()], Np(x;”)via differentiable trajectory
reweighting (DiffTRE)*%. Consider aset of states {X;,X5, --- ,Xy}sampled
fromthe Boltzmanndistribution defined by equation (4) for areference
state matrix iz. For values of msufficiently close to i (see next section),
we define aweight

w, = exp (—ﬁ [U@ii”) - U(fiiﬁ)]) 10)
Zj exp (-8 [U(Xj; m) — UK ))

foreach x;. We canthen express our expectationin terms of these weights

E[O&)] ~ 2 w;0K)) (1)

Thisyields an expression for E[0)]such that V,E [0&)] # 0. Note that
w; = Linthe limit where m = . Importantly, gradients are not com-
puteJthrough theunrolled trajectory (asintraditional differentiable
molecular dynamics) but only through the energy function, relieving
many of the numerical instabilities and memory constraints that
typically plague differentiable molecular dynamics. This is equiva-
lentto alow-variance REINFORCE gradient estimator by using knowl-
edge of the unnormalized steady-state probabilities to effectively
integrate over all paths yielding the same equilibrium state. Further-
more, the set of reference states must not be computed at every
iteration (see the ‘Differentiable Monte Carlo’ section in the Meth-
ods), relaxing the computational cost imposed by running large
simulations.

In practice, as the rows of must be normalized, one optimizes a
setoflogits 1 € R™™thatare normalizedin theloss functiontoyield r
ateachstep, thatis ir; = softmax(A,). As equation (9) reduces to equation
(1) only when mis one-hot, we anneal i throughout the optimization
byintroducing atemperature term 7 to the normalization procedure,
thatis i, = softmax(A1,/7). We find that asimple linear annealing scheme
using Ty, = 1.0 and 7,4 = 0.01 works well in most cases.

In the general case, sampling from the distribution defined by
equation (2) isintractable because there are m" possible permutations
of state identities; however, this calculation becomes tractable in the
case of anenergy functionin which the total energy is expressed as the
sum of pairwise energies. Consider such an energy function for a fixed
set of particle identities s

-,

Utot(f;s) = Z Upair ()E.is-fj;gi,gj) (12)
LJj

This can be generalized to the case of continuous particle identities:
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IE[Utot ()?; ”)] = Z IE[Upair (’?ivfjg ”)] (13)
ij
where
E [Upaie & 1.X ;)] = ‘Z (.5 )m(j.S))
Sis;EM (14)

><Upair (X’i’fj;ghgj)

Crucially, alltermsin equation (14) areindependent and we can there-
fore rewrite E[U,,; ;X ; )] as

E[Upaie @13 m)| = Uy -1 (15)
where
Uy = Upair @ 1%k, @16)
and
Ty=mQm, (17)

where ® denotes the Kronecker product. When performed in serial,
the complexity of this calculation reduces to 9(n2m?) and the n* factor
canbe furtherreduced by the use of neighbor lists. Crucially, however,
the entire calculation can be highly parallelized on a modern GPU as
thetermsinequation (13) areindependent. Althoughitis standard for
coarse-grained models to be pairwise, this formulation could be
extended to models with k-body interactions where the complexity of
the expected energy calculation will scale as ©(n*m*) (before any neigh-
bor list optimizations).

Differentiable Monte Carlo
Unlike ageneral reinforcement learning environment, we often know
things about a physical system under study. Importantly, for example,
we often know the probability distribution of the microstates of agiven
dynamical system. In this section we focus on the simple case of an
equilibrium system in the canonical ensemble where the probability
of state x; is "”W’V), where B is the inverse thermal energy, UX,)) is the
potential energy of x¥;and Z = Eje—ﬁu@ is the partition function.
Consider a set of states sampled from this distribution via some
control parameters 8, Xy = {X1,X,,--Xy}. Note that there are many
schemes for efficiently sampling from the Boltzmann distribution such
asstandard molecular dynamics and Monte Carlo algorithms, and even
generative deep learning methods. Examples of 6 are parameters of
the potential energy or parameters of the initial conditions. Via ergo-
dicity, we can compute the expectation of some state-level observable
O, 0)as

(O, 6)); o = y X, 0&10) 8)

This time, our expectation is defined with respect to a set of sam-
pled states (whose probability distribution we know) rather than with
respect to aset of trajectories (or equivalently, random seeds). When
formulated in this fashion, our calculation of the expectation has no
history dependence; we do not care how the states are sampled, only
that they are sampled from the underlying distribution.

However, we cannot immediately compute an accurate gradient
of equation (18). Although we know that the relative probabilities of
each microstate will change as we change 6, we lose this dependence
inour gradientsignal by only considering the final set of sampled states
as V4= = 0. Torecover this signal, Zhang et al.”’ and Thaler and Zavad-
lav*®independently introduced asimple reweighting scheme (termed

differentiable trajectory reweighting, or Diff TRE by the latter publica-
tion) in which we rewrite equation (18) as

(O, )z ,ex = Z w;0(;,0) (19)
where
= P ij/D@Of '3 (20)
2iPeX)IpyX;)

and Ais the reference potential viawhich X, was sampled. Equation (20)
only requires unnormalized probabilities as the normalizing factors
cancel. For example, in the case of the canonical ensemble, equation
(20) does not require knowledge of the partition function:

e BUs(k)=Us(31)

- Zje—ﬂ(ue(}p—ug(i,))

Crucially, in the caseinwhich 6 = 8, w; = ﬁ but Vg4 log( p&)) # 0, Thaler
and Zavadlavintroduced the notion that reference states collected via
6 can be reused for small differences between 6 and 8, but as this dif-
ference grows few states dominate the average and the reference states
should be resampled. This is captured via an expression for effective
samplessize:

N
-2 w;In(w;)

Neff =e =l (22)

Refertoref.29 andref. 28 for acomplete introduction to this method.

Thisreweighting scheme solves three major problemsin differenti-
able programming for dynamical systems. Foremost, it resolves both
problemsrelated to memory, and numerical instability as gradients are
no longer computed with respect to unrolled trajectories. However,
thereisathird benefit: the entire sampling procedure does not have to
be rewritten in an automatic differentiation framework. Instead, one
only must write the energy functionin such aframework. Furthermore,
objective functions that do not explicitly depend on 8 also do not have
be differentiable, permitting theimmediate use of the rich ecosystem
of libraries that already exist for the analysis of molecular dynamics
trajectories. This reduces a massive barrier to entry for differentiable
programmingin cases where the unnormalized probability of sampled
states is known, particularly as it relates to larger and more complex
code bases.

In the language of stochastic gradient estimators, Diff TRE can
be regarded as a low-variance REINFORCE estimator. A traditional
REINFORCE estimator would regard the probability of each state as
the probability of its corresponding trajectory, drastically inflating
the variance of the estimator as many trajectories can yield the same
equilibrium state. Diff TRE permits us to use our knowledge about the
distribution fromwhichwe are samplingin our estimate of the gradient,
effectively integrating over all trajectories for a given state.

Mpipiforce-field

Mpipi is a coarse-grained model of protein-protein and protein-RNA
interactions for studying biomolecular liquid-liquid phase separa-
tion”. Introduced in 2021, Mpipi has gained widespread popularity
for the computational study of liquid-liquid phase separation and the
underlying biophysics®™ % Recent machine-learning methods use Mpipi
togenerate ground-truth training data, with which neural networks are
trained to either predict ensemble properties or generate sequences
with target characteristics?*“*. Note that such methods for inverse
design are limited not only because they generate sequences with
respect to a learned approximation of Mpipi rather than Mpipi itself,
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butalsobecausein principle designing sequences for a different target
ensemble property demands an entirely new deep learning model.

In Mpipi, each amino acid monomer is represented a single iso-
tropic sphere. Each amino acid type is assigned a mass, diameter,
charge and energy scale. Like 0XDNA, all interactions are pairwise and
the potential energy is given by

(23)

(Velec +V, air)
2 b

l/Mpipi = z Vbond +
nn other pairs
where nn denotes a fixed set of consecutive bonded pairs. V, 4 is
computed as aharmonic bond potential, V,,.. asa Coulomb term with
Debye-Hiickel electrostatic screeningand V,;, asa Wang-Frenkel inter-
action®*. The parameters of this potential were fit to reproduce both the
atomistic potential-of-mean-force calculations, and the bioinformatics
data. We modulate salt concentration effects through changingionic
strength and thus adjusting the Debye screening lengthin the Coulomb
term. Although only anapproximation, accurately modeling high salt
concentrations would in principle require solving the nonlinear Pois-
son-Boltzmannequation and more explicit treatments of ion distribu-
tions thatare beyond thereach of coarse-grained approaches (refer to
ref. 21 for complete details of the model and its parameterization, and
ref. 23 for a description of the modified parameters used in this work).

Simulations

Allsimulations were performed inJAX-MD? on an NVIDIA A100 80 GB
GPU.Weused aLangevinthermostat withatimestep of 10 fs at standard
conditions of 300 K and 150 mM salt concentration unless specified
otherwise. Forces are computed viaautomatic differentiation, circum-
venting the need to manually derive forces for the expected Hamilto-
nian over all discrete sequences. Specific simulation parameters (for
instance, equilibration time, simulation length, sample frequency)
are provided for each optimization in the Supplementary Informa-
tion. Importantly, the parameters above are designed to ensure that
simulated trajectories are uncorrelated to initial conformation and
run long enough to sufficiently sample the equilibrium reference
ensemble (Supplementary Fig.2 and Supplementary Section 3). Note
that although we use molecular dynamics simulations in this work,
our design framework is agnostic to the method of obtaining refer-
ence states (refer to the ‘Code availability’ section for details on the
code used).

Computational performance and tradeoffs

Forward simulations of probabilistic sequences scales
near-linearly with sequence length and only incurs a modest cost
(Supplementary Fig.1a,b) over the discrete counterpart on GPUs (see
Supplementary Section 2). Performance on CPUs is overall much less
efficient due to lack of parallelism.

More generally, in the following we report key computational
tradeoffs and considerationsin using this method. Each optimization
for R, at typical conditions (300 K, 150 mM salt concentration, L., =50)
in this work requires several hours of compute on a single GPU. By
contrast, using ALBATROSS—that is, the machine-learned predictor
used for comparison in Fig. 2—for design, as in ref. 24, only takes tens
of seconds. We next compare with a method that directly operates
at the level of molecular simulation that however does not employ a
continuous sequence space representation. In Pesce and colleagues’
design framework, which performsaMonte Carlo search over adiscrete
sequence space, and applies alchemical calculations to minimize the
need to re-simulate, a representative optimization requires 4,500
iterations and 20 days”’.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All optimized sequences are provided in the Supplementary Data 1.
Source data are provided with this paper.

Code availability

The complete codebase is available at the following GitHub repository:
https://github.com/rkruegsi23/idp-design. Thisrepositoryincludesa
notebook containing a scaffold of asimple optimization for a custom
state-level property. A snapshot of this repository, including the full
source code and corresponding documentation, has alsobeen archived
onZenodo at https://doi.org/10.5281/zenodo.15311353 (ref. 65).
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