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The design of folded proteins has advanced significantly in
recent years. However, many proteins and protein regions
are intrinsically disordered (IDPs) and lack a stable fold i.e.,
the sequence of an IDP encodes a vast ensemble of spatial
conformations that specify its biological function. This con-
formational plasticity and heterogeneity makes IDP design
challenging. Here, we introduce a computational framework
for de novo design of IDPs through rational and efficient in-
version of molecular simulations that approximate the un-
derlying sequence to ensemble relationship. We highlight
the versatility of this approach by designing IDPs with di-
verse properties and arbitrary sequence constraints. These
include IDPs with target ensemble dimensions, loops and
linkers, highly sensitive sensors of physicochemical stim-
uli, and binders to target disordered substrates with distinct
conformational biases. Overall, our method provides a gen-
eral framework for designing sequence-ensemble-function
relationships of biological macromolecules.

Introduction

The basis of biomolecular function is often specified by
a sequence which encodes an ensemble of 3D confor-
mations (1). A prominent example is intrinsically disor-
dered protein regions (IDPs), which are found in most liv-
ing organisms and play key roles in diverse cellular func-
tions including transcription, cell signaling, cellular immu-
nity, and translation (2–4). IDPs lack a stable 3D struc-
ture, rather, they dynamically interconvert between a large
range of non-random conformations (5–7) whose local
and global properties shape cellular functions (2). IDPs
facilitate molecular recognition through embedded short
linear motifs (8) and fuzzy interactions with multiple tar-
gets (2), and when tethered as intervening linkers or spac-
ers, they modulate interactions between adjacent folded-
domains (9). The conformational plasticity that under-
lies IDPs is highly sensitive to physicochemical and en-
vironmental contexts and thus they often function as in-
tracellular sensors (10). Further, IDPs regulate assem-
bly of higher-order biomolecular assemblies and conden-
sates (11–14), often through low-affinity multivalent inter-
actions, that play central roles in cellular signaling and
information processing. Finally, dysregulation of IDPs
and IDP-dependent interactions are increasingly corre-
lated with multiple pathological states (11, 15). Thus, there
is widespread interest to design IDPs with tailored func-
tions for a variety of roles in human health and industry.

Despite recent advances in protein structure design en-
abled by the protein data bank (PDB) and machine learn-
ing (16–19), these computational methods have had lim-
ited ability for designing disordered proteins. Structures of
IDPs are not characterized by single stable folds, rather,
they occupy a vast ensemble of dynamic configurations.
Recent developments in coarse-grained molecular simula-
tions have successfully predicted ensemble properties of
IDPs (20–22). These simulations produce training data for
approximate machine learning models that predict partic-
ular properties (5, 23) (e.g. radius of gyration and poly-
mer exponents) and can be subsequently inverted for de-
sign (24). While each method has found success, us-
ing separate algorithms for the forward and inverse prob-
lems reduces accuracy and generalizability to different tar-
get properties and force field parameters. It would be far
preferable to directly invert the molecular simulations that
model the sequence-ensemble relationship.

In this paper, we introduce an algorithmic approach to
design IDPs with tailored properties through inverting
molecular simulations. Our framework uses gradient-
based optimization on molecular simulations for design-
ing sequences with arbitrary equilibrium properties, bridg-
ing machine learning technology with ideas from statis-
tical physics. We employ this method to engineer IDP
sequences for a wide range and complexity of ensem-
ble dimensions, including highly optimized loops and link-
ers. Our framework naturally accommodates arbitrary se-
quence constraints, which we highlight through the design
of sequence patterning variants with the same composition
but distinct ensemble properties. We then construct IDP-
based sensors that are sensitive to salt concentrations,
temperature, and concentrations of modification-driving
enzymes. Finally, we design candidate IDP binders for
highly disordered biological and synthetic substrates. Of
note, the accuracy of our predictions is limited by the accu-
racy of simulation parameters that describe IDP sequence-
ensemble relationships; our contribution is to show how to
find optimal sequences given a potential. Our proposed
method, while generically potential-agnostic, will benefit
from the continued iteration between force-field develop-
ment and experiment. Overall, our paper outlines a flexible
strategy for de novo IDP design that can be generalized to
engineer sequence-ensemble-function relationships for di-
verse biopolymers.
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Fig. 1. Method for inverse design of IDPs
A. The amino acid sequence of an IDP encodes for an ensemble of dynamic 3D conformations structures that determines properties shaping molecular and cellular functions.
B. A discrete IDP sequence, a vector of length n where each position is typically a categorically represented amino acid character, is relaxed to a continuous, probabilistic
sequence representation π, a matrix of size n × 20. Here, the (i, j) entry of π is the probability of residue at position i being amino acid j.
C. To model the forward sequence-ensemble relationship, we simulate the probabilistic sequence through coarse-grained molecular dynamics simulations, defining the
Hamiltonian of the system as the expected Hamiltonian over all sequences (see Methods). To invert this relationship for sequence design, we optimize this probabilistic
sequence π via gradient descent and anneal to a discrete sequence through the optimization.

Results

Model Formulation
Rational de novo design of IDPs requires two key ingre-
dients: (1) a reasonably accurate “forward” model of the
sequence-ensemble-function paradigm (Figure 1A) and
(2) an algorithm to “invert” this through directed search
of sequence space towards a desired functional property.
Over the last few years, coarse-grained molecular simula-
tions with custom pair potentials have made (5, 21, 25)
dramatic improvements in predicting effective ensemble
properties of IDPs. In this paper, we focus on molecular
dynamics simulations using 1 AA=1 bead coarse-graining
with the Mpipi-GG (see Methods and SI Note 1) (21, 23).

Our key innovation is the development of a differen-
tiable algorithmic framework to invert the simulation-based
sequence-ensemble relationships. To do this, we lever-
age recent advances in differentiable programming and
stochastic gradient estimation (26–29) to compute the
gradient of a loss function that depends on any set of
ensemble-averaged properties: ∂seqL(⟨P sim

1 ⟩,⟨P sim
2 ⟩, · · ·).

Since this quantity is only well-defined for smooth variable
changes, we use a continuous representation of the se-
quence that is amenable to simulation and parallelization
on GPUs (see Methods). For a sequence of L residues,
this continuous probabilistic representation (Figure 1B),
π = f(λ), is defined by logits λ of size L×20. The residue
identity at every site is characterized by a normalized prob-
ability vector over the different types of amino acids. A par-

ticular discrete sequence corresponds to a one-hot encod-
ing i.e., each position is represented by a vector of length
20 with all entries but one being 0. In general, ensemble-
averaged predictions are not identical to predictions from a
distribution of discrete sequences sampled from the same
distribution (see SI for derivation, Figure S2).

While in principle libraries like JAX-MD enable gradient
calculation over unrolled MD trajectories, this is slow,
scales poorly with system size, and is plagued by numer-
ical instability (Figure S1, SI Note 2). To address this, we
expand on a perturbative calculation developed indepen-
dently by Zhang et al. (29) and Thaler and Zavadlav (28)
to calculate the gradient with respect to π from a set of
states sampled from the equilibrium Boltzmann distribu-
tion. This calculation provides significant speedup and ac-
curacy in gradient estimation and allows reuse of simula-
tion snapshots for multiple sequence updates. Finally, we
incorporate an annealing procedure that gradually forces
π to become increasingly discrete through the optimization
(Figure 1C, see Methods). Unless otherwise specified, we
initialize all optimizations with a uniform distribution.

Designing IDPs with varying ensemble dimensions
Ensemble-averaged dimensions of an IDP, for e.g., the ra-
dius of gyration (Rg) or the end-to-end radius (Ree), are
coarse-grained metrics that reveal conformational biases
which can correlate with binding and emergent phase be-
havior (20, 30, 31). Therefore, we first set out to design
an IDP of fixed sequence length (n = 50) with a target di-
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Fig. 2. Designing IDPs with varying ensemble dimensions
A. Employing the framework defined in Figure 1 for design of IDPs with defined ensemble-averaged physical dimensions, specifically the Rg,Ree.
B. An example optimization to design an IDP of length n = 50 with Rg = 20 Å. The top panel represents the Rg from the simulated probabilistic sequence and the bottom
panel represents the average sequence entropy at each position. Highlighted points (in pink) represent approximately the start, mid-point, and end of the optimization.
C. The evolution of the probabilistic sequence throughout the optimization depicted in B. at highlighted points accompanied by a characteristic conformation in a box of side
a = 75 Å. Each residue is colored differently and the column height corresponding to each residue position is the likelihood of being each residue. The probabilistic sequence
is initialized as a uniform distribution of sequences, with each residue having an equal probability at each position, and the final sequence is nearly discrete.
D. Each panel shows results for a set of optimizations, with each point comparing the predicted versus target ensemble dimension (Rg or Ree) for a particular IDP sequence.
The different panels highlight solutions for different sequence lengths (n = 50,75) and for different force-fields (Mpipi-GG - left two panels, HPS - right two panels).
E. The optimization trajectory for a sequence of length n = 50 for target Rg = 35 Å in which ALBATROSS underpredicts Rg of the final optimized sequence by ∼ 4 Å.

mension of ⟨Rg⟩ = 20 Å. We then update π in the direc-
tion of desired ⟨Rg⟩ while simultaneously annealing, al-
beit gradually, towards a discrete sequence (Figure 2C).
Our routine converges (over 50 epochs and 2.5 hours on
an NVIDIA A100 GPU) to a sequence (Figure 2B, Sup-
plementary Data, SI Note 3) which explores a range of
conformations (Figure S2) with an ensemble-averaged Rg

of ∼ 20.1 Å. Rerunning the optimization with varying ran-
dom seeds leads to different sequences with similar Rg –
highlighting the ability of our approach to identify multiple
sequences that exhibit similar ensemble-averaged proper-
ties (Figure S2, Supplementary Data).

With this framework, we are able to generate sequences
of multiple lengths (n = 50, n = 75) across a wide span
of Rg (Figure 2D). When we change the loss to corre-
spond to a different physical property, the end-to-end ra-
dius or Ree – a dimension which provides insights into
linker function in multi-domain proteins (9) – we are able
to design IDPs across a wide range of Ree (Figure 2D,
SI Note 4). We find that the optima we obtain using this
method are more accurate than those obtained with a pure
machine-learned predictor derived from Mpipi-GG simu-
lations (ALBATROSS), when compared against the un-
derlying molecular dynamics simulations for ground truth
(Table S1). As an example, a sequence we generate

(n = 50, ⟨Rg⟩ = 32.55 Å, ⟨Rg⟩target = 32.5 Å) is incorrectly
predicted by ALBATROSS to be off by ∼ 4 Å (Figure 2E).
A core strength of our algorithm is that by directly opti-
mizing over simulations, we can explore a wider design
space that is not subject to approximations underlying
machine-learned descriptors. This means that more gen-
erally, our method can be flexibly applied to any force field
without requiring further data generation, architecture en-
gineering, fine tuning, or retraining of existing models. We
demonstrate this by designing IDPs of particular ensem-
ble dimensions using the same method but with a different
commonly used pair potential (Figure 2D). Together, our
method provides a versatile approach to identify IDPs with
specified conformation-averaged single-chain properties.

De novo design of loops and linkers
We next asked, can we construct IDPs with more complex
descriptors of their conformational ensembles? In particu-
lar, we focused on designing sequence variants that maxi-
mized decoupling between Rg and Ree as opposed to the
linear scaling found in ideal polymers, unfolded proteins,
and many naturally occurring IDPs (32, 33). We reasoned
that such sequence variants could potentially represent
optimally designed loops (Rg − Ree/

√
6 >> 0) or linkers

(Rg −Ree/
√

6 << 0) (Figure 3A, SI Note 5).
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Fig. 3. Shaping global conformational biases through loops and linker IDPs
A. A graphical illustration of ensemble coupling of Rg and Ree, highlighting linear relationships for ideal homopolymer chains (Rg = Ree/

√
6) and decoupled off-diagonal

points for loops and linkers. Below, we show the loss we employ for the loop and linker design problems, expressed to maximize the decoupling between Rg and Ree/
√

6.
B-C. For the optimized loop (B) and linker (C) sequences, we depict the normalized contact frequencies computed over a trajectory. To the right of it, a representative
configuration that is colored by amino acid identity (similar to Figure 2C), and below it, the relative change in loss value for a set of key mutational scans. For contact
frequencies, red/blue regions represent higher/lower expected frequencies when contrasted with an ideal polymer of identical length. The generic increase in loss upon
mutation represents that our solution is highly optimized for the target property.

For a sequence of fixed length (L = 50), we identify highly
optimized loop and linker sequences with finely-tuned
mechanistic properties. Our loop optimization yields a
low-complexity sequence with sticky aromatic patches
comprising tryptophans and tyrosines at either termini,
interspersed by prolines and arginines that kink out the
intervening sequence – highlighted by the normalized
contact frequency maps and representative conformations
(Figure 3B). Although the underlying force-field predicts
that W-W interactions are stickier and perhaps should thus
drive stronger loops, mutating the mixture of Y/Ws in our
solution to either all Ys or Ws leads to a less optimal loop
(Figure 3B, Supplementary Table S2). Similarly, muta-
tional scans of each residue type into alanines or choosing
less-complex losses lead to suboptimal loops (Supple-
mentary Table S2) – generically reflecting an inability of
simple sequence perturbations to decouple reductions
in end-to-end distances from concomitant reductions in
chain Rg. Hence, the optimal loop architecture here arises
from tradeoffs between overall sequence composition
and patterning and emergent many-body interactions.
When optimizing for linkers, we find that low-complexity
sequences that intersperse prolines amongst a backbone
of positively charged arginines, maximally decoupling
Ree from Rg (Figure 3C). This is largely expected since
like-charges have short-range repulsive interactions and
simple mutation scans (Figure 3C) are consistent with this
intuition. Interestingly, we still identify a variant (R → K)
that leads to slightly more optimal linkers. Overall, these
design problems reinforce the ability of our algorithm
to navigate high-dimensional sequence-spaces while
balancing tradeoffs in ensemble properties.

Engineering IDPs with arbitrary sequence constraints
An important aspect of protein design is to engineer
molecules that are subject to sequence constraints. For
IDPs, such constraints could span requirements for highly
disordered sequences, particular sequence compositions
or motifs, or any other combinatorial sequence features.
To incorporate arbitrary constraints, we generically ex-
pand our algorithmic framework by building on our pre-
vious work (34). First, constraints are enforced through
leaky ReLu functions multiplying the target property loss,
resulting in gradients that navigate sequence space while
maintaining constraints (Figure 4A). Second, instead of
directly optimizing over the sequence, we optimize over
the weights of a pre-trained and fully connected NN that
parametrizes π (Figure 4A). Together, this presents a mod-
ular and generalizable strategy to navigate constrained
high-dimensional sequence spaces (SI Note 6).

With this framework, we first set out to identify IDPs that
are constrained to be highly disordered. We leverage a
recent ML-based disorder predictor, Metapredict (35), to
measure and constrain disorder (SI Note 6). Importantly,
since the disorder prediction (and requirement) is only ex-
act for a discrete sequence, the disorder-contribution to the
loss is gradually made more stringent over the optimiza-
tion procedure (Figure 4B). Designing compact proteins
i.e., those with small Rg, without any constraints tends
to discover highly hydrophobic proteins that are typically
predicted to be well-folded and not disordered (see Figure
4C). When we incorporate our disorder constraint, we are
able to identify sequences that are simultaneously com-
pact and highly disordered (Figure 4B) across a range of
Rg (Figure 4C).
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Fig. 4. Engineering IDPs with arbitrary sequence constraints
A. Our framework for applying sequence constraints. Following Ref. (34), we construct a loss function that incorporates arbitrary constraints on the probabilistic sequence
and overparameterize the input to the optimization problem i.e., the sequence representation, via a neural network.
B. An example of IDP design (n = 50, Rg = 12.5 Å) subject to a constraint requiring a minimum degree of sequence disorder as predicted by Metapredict (35). The top
panel shows the simulation-predicted Rg over training epochs. The bottom panel shows the annealing of the sequence disorder constraint across the optimization.
C. Average disorder of optimized sequences (n = 50, 5 replicates) versus target Rg value with (black) and without disorder constraints (grey). Dashed lines represent the
threshold of enforced disorder constraint. Optimized sequences exhibit a Rg within 5% / 10% of target value for constrained/unconstrained optimizations.
D. An example of IDP design (n = 50, Rg = 17.5 Å) subject to a constraint that requires 50% positively charged (R/K) and 50% negatively charged (E/D) residues. The
constraints (right panel) and the target Rg (left panel) are achieved as the probabilistic sequence is annealed to a discrete sequence.
E. Rg values of optimized sequences are plotted against κ values, a measure of sequence blockiness introduced in (36), recapitulate the inverse relationship shown in (36).
The inset depicts sequence patterning represented by blue/red lines for positive/negative residues and shows relatively interspersed/blocky IDPs for high/low Rg values.
Each dot represents the most optimized sequence from 5 trajectories and have an Rg within ∼ 10% of the target and charge ratios within ∼ 5% of target.

We next set out to design IDPs with compositional con-
straints. Motivated by previous work (36), we explored
the effect of sequence patterning, particularly blockiness,
on ensemble dimensions while keeping overall composi-
tion fixed at 50% positive and negative charges. To per-
form this multi-constraint optimization (Figure 4D), we pre-
train the overparameterized fully-connected NN to output
a set of logits corresponding to the target charge distri-
bution, and then use this in our constrained optimization
procedure. Consistent with previous predictions, we find
an inverse relationship between ensemble dimensions and
sequence blockiness (Figure 4E). Together, our results
demonstrate the ability of our model to design IDPs with
multiple sequence-based constraints.

Programming stimuli-response in IDPs
A key biological function of many IDPs stems from their
ability to sense and respond to cellular and environmental
stimuli such as varying salt concentrations, temperature
changes, dissolved CO2 levels, and pH (10, 37) through
changing global or local chain conformations. Thus, we

next decided to create IDP-based sensors, where we de-
fined sensor function as arising from large changes in
global conformation (Rg) in response to varying external
stimuli (Figure 5A, SI Note 7). Our algorithm naturally
handles such complex design formulations, which require
tailored sequence-ensemble-function relationships across
multiple conditions: for example, a salt contractor IDP sen-
sor must have high Rg at low salt and low Rg at high salt
concentrations. Thus the design optimization must find the
sequence that achieves this goal simultaneously over both
conditions.

We first began by designing sensors that respond to an
increase in salt concentrations from 150 mM to 450 mM,
where the salt concentration affects electrostatic screening
lengths (SI Note 7). By optimizing for a salt-contractor, we
identify a sequence (Figure 5B) rich in arginines with small
clusters of interspersed H/Y/W residues. The weaken-
ing of repulsive interactions between like-charge R’s with
salt leads to an effective and modest compaction – as ex-
emplified by a poly-R sequence of identical length (Ta-
ble S4). In our solution, this passive contraction is am-
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Fig. 5. Programming stimuli-responsive IDP sensors
A. The stimuli-response is depicted by global change in ensemble dimensions across the stimulus (green gradient bar could mean salt, temperature, or phosphorylation) and
contractors/expanders represent the direction of change. Below the illustration, we show the specific loss that is expressed as the difference of the two Rg values across the
stimuli conditions, with the sign depending on whether we are designing a contractor or expander.
B-C. Optimized contractor and expander sequences with contact frequency maps at low and high salt computed from representative trajectories and Rg is reported below.
For contact frequencies, red/blue regions represent higher/lower expected frequencies when normalized with an ideal polymer of identical length.

plified by the aromatic clusters whose attractive bonding
is salt-insensitive. The periodic spacing and patterning
of aromatic solutions in our designed variant only drives
compaction under high salt conditions (Figure 5B). All but
one mutants that change composition or patterning lead to
more compaction but are no longer as salt-sensitive (Table
S4, Figure S4A, Supplementary Data).

This ability to exploit complex, many-body heteropolymer
physics is even more dramatic in our salt-expander variant
(Figure 5C), designed to increase Rg with increasing salt
concentration. Our algorithm converges to an expander
with 3 roughly equal-size sequence modules: positively
charged N-terminus, negatively charged C-terminus, and
a linker region that is made of proline spacers interspersed
with sticky aromatic residues. The weakening of attractive
interactions between positive and negative residues with
salt only drives modest expansion, as seen in a K25E25
variant (Table S4, 2.2 Å change). Two linker features, (a)
a sticky pi-cation interactions with aromatic residues and
the N-terminus and (b) steric effects from proline residues
that reduce contact frequency of N/C termini, work in tan-
dem to drive a salt-sensitive “molecular-clasp” (Figure 5C)
with a nearly 100% change in Rg. Removal of any key
features, e.g. through reducing steric hindrance by P → A
mutations, or removing sticky residues, leads to a weaker
salt-response (Figure S4B). Thus, our method identifies
a balance between salt-sensitive, salt-independent, and
steric features whose coupling transforms into a cooper-
ative large-scale stimuli-response. This designed molecu-
lar clasp, in turn, sheds light on physical mechanisms that
underlie sensitive and plastic conformational ensembles.

Finally, to highlight the generality of our model, we use
a similar approach to construct sensors that respond by
contraction or expansion to increases in temperature and
to phosphorylation of serine residues (Figure S5, Sup-
plementary Table S3, SI Note 7). Since the underlying
force-fields do not accurately capture temperature depen-
dent variations in hydrophobic interactions, the effect sizes

predicted by our model are rather small (Figure S5D-F).
Incorporating temperature dependent interactions e.g., in
the spirit of Ref. (38), into our model framework will im-
prove future sensor design. By contrast, we find an in-
creasing range in sensor dimension change, and thus
response size, with more phosphosites (Figure S5A-C).
The mechanisms of contraction/expansion rely on interac-
tions between phosphorylatable residues buried in neigh-
borhoods of positively/negatively charged residues (Figure
S5A-C). Thus, the addition of negatively charged groups
upon phosphorylation promotes favorable or repulsive in-
teractions, leading to downstream change in IDP ensem-
ble size.

Binders for disordered substrates
The function of many IDPs is driven by binding to disor-
dered substrates, with examples of pico-molar level affini-
ties in highly charged IDPs (30, 39, 40). We next asked,
can we design disordered binders for a specific target sub-
strate? To do this, we modify the forward simulation to in-
clude both the substrate, whose residue identity is fixed but
can still sample a variety of conformations, along with a po-
tential binding ligand whose sequence is learnable (Figure
6A). Precise calculation of binding constants is computa-
tionally expensive, often requiring sophisticated enhanced
sampling techniques. To overcome this, we make the fol-
lowing simplifications: (a) strong binders are identified by
minimizing average interstrand distance and (b) a biasing
potential is employed to encourage collection of reference
samples that are confined to an effective local volume (SI
Note 8). These simplifications help identify high-affinity
binders but lose the ability to measure precise quantitative
rates or constants.

We first seek a binder for a homopolymeric positively
charged substrate R30. Our model identifies a predom-
inantly negatively charged ligand (>90% D/E residues,
Supplementary Data) as a strong binder. Consistent with
poly-electrolyte models, we find that predicted effective in-
teraction coefficients (41, 42) (SI Note 8) are highly fa-
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Fig. 6. Designing IDP binders for disordered substrates
A. For a given substrate, binder design involves finding an IDP sequence that minimizes the interstrand center-of-mass distance between conformationally fluctuating IDPs.
B. The optimization of a binder of length n = 30 for R30 is depicted by convergence to low interstrand distance over the trajectory.
C. The optimization of a binder of length n = 50 for FUS-LC (n = 169) is depicted by convergence to low interstrand distance over the trajectory.
D-E. Normalized contact frequency maps for R30 (D) and FUS-LC (E) are shown, highlighting both intramolecular and intermolecular interactions. For contact frequencies,
red/blue regions represent higher/lower expected frequencies when contrasted with an ideal polymer of total length of binder + substrate. Representative bound snapshots of
binder (green) and substrate (grey) are depicted to the right of the panel and lines within box separate out substrate and binder.

vorable for unlike-charge mediated substrate-ligand inter-
actions (Figure S6C) and unfavorable, as expected, for
like-charge mediated substrate-substrate interactions. We
next identify binders for the Low-Complexity domain of
FUS, a well-studied IDP with prominent roles in human
physiology and disease (43, 44) and the poly-Q region
of Whi3, an IDP with prominent roles in regulating nu-
clear autonomy and cell cycle in budding yeast (45). As
shown in Figure 6B, our optimization leads to an identi-
fication of a target binder (Supplementary Data). While
both FUS-LC and Whi3 have strong self-affinity (43, 45),
effective interaction coefficients predict stronger interac-
tions between our optimized binders and their respective
substrates (Figure S6C) over the homotypic substrate-
substrate interactions. In unbiased forward simulations,
we observe strongly enriched intermolecular interactions
for all binder-substrate pairs (Figures 6D-E, S6B), indicat-
ing strong binding at the µM concentrations we studied.
Across all the optimizations, we find that a sharp change
in the learning dynamics (Figures 6B-C, S6A) is concomi-
tant with strong binder identification. We expect that fu-
ture studies will dissect whether this transition represents
features of the underlying learning protocol i.e., annealing
schedule or noisy gradient signal due to limited sampling,
or reflects the cooperative biophysics of such molecular

binding events. Overall, our model lays the framework to
generate candidate IDP binders for disordered substrates.

Discussion

Intrinsically disordered proteins and protein regions (IDPs)
are biomolecules that are found across the tree of life, play
critical roles in molecular recognition, cellular organization,
and information processing, and when dysregulated, cor-
relate with pathology. The sequence of an IDP encodes
for a vast repertoire of interconverting spatial conforma-
tions that shape their emergent function. De novo design
of IDPs with diverse and arbitrary properties remains limit-
ing, in large part, due to lack of methods to generally invert
the underlying sequence-ensemble-function relationship.

In this paper, we introduce a computational framework
to discover IDPs for a wide variety of target functions by
rationally and efficiently inverting molecular simulations
that capture the underlying sequence-ensemble relation-
ship (Figure 1). Using this framework, we first design IDP
sequences with varying and complex coarse-grained en-
semble dimension properties. Specifically, we design se-
quences across a range of Rg and Ree (Figure 2), and
with tailored conformational biases i.e., loops and linkers
(Figure 3), properties that have been shown to shape cel-
lular function (2, 30). We next develop a modular strat-
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egy to incorporate any sequence constraints in the de-
sign pipeline. With this, we engineer IDPs that are si-
multaneously compact and disordered, and generate se-
quence patterning variants with the same overall compo-
sition but differing ensemble dimensions (Figure 4). With
this framework, we next design highly sensitive sensors
to multiple physicochemical and cellular stimuli such as
salt, temperature, and phosphorylation (Figure 5). These
designed sensors, in turn, shed light on the physical
mechanisms by which the balance of competing intra-
molecular interactions encodes for large conformational
changes. Finally, we use this method to identify disordered
binders for low-complexity substrates (Figure 6). More
generally, there is significant potential to apply the out-
lined framework to distinct biomolecular sequences (pro-
teins, RNA, DNA) with equilibrium sequence-ensemble-
property relationships that can be predicted by a wide
range of techniques spanning molecular dynamics, Monte-
Carlo simulations (46), field-theoretical approaches (47),
and thermodynamics-informed models (41, 42, 48).

The framework we propose directly inverts simulation-
derived sequence-ensemble relationships to drive de
novo IDP design with tailored single-chain, binding, and
environmental-specific properties. A key aspect of this ap-
proach is the integration of continuous and relaxed se-
quence representations with molecular simulations, in-
spired by a host of recent efforts that invert analytical cal-
culations or machine-learned approximations for biopoly-
mer design (34, 49, 50). Predictions via our framework,
which require experimental tests, are fundamentally con-
strained by the accuracy of the underlying simulations. A
key advantage of our approach is the underlying flexibility
of gradient-based optimization, which in principle, can be
leveraged to calculate gradients and optimize simulation
parameters instead of sequence design. Namely these
same methods can be used in combination with experi-
ments to drive an iterative loop to improve simulation ac-
curacy that is benchmarked on multimodal experimental
measurements of IDP properties. In a parallel paper we
demonstrate how such an approach can improve simula-
tion accuracy by fitting the parameters of a coarse-grained
model of DNA to complex experimental data such as melt-
ing temperatures and stretch and torsional moduli (51).

Incorporation of emerging machine-learning approaches
– for e.g., simulation-free generative methods to generate
conformational ensembles (52, 53), combining alchemical
and molecular dynamics simulations for sequence variant
design with target single-chain properties (5, 54), and
approximate ML models that can rapidly invert pre-trained
sequence-single-chain property relationships (23, 54),
continues to expand the toolbox for protein engineering.
Combining physics-based approaches with recent ad-
vances in differentiable programming holds promise for
computational design and engineering for a wide variety
of biomolecules and their functions.

Limitations of the study
Our paper introduces a framework to design IDPs with tai-
lored equilibrium sequence-ensemble relationships mod-
eled by simulations. First, since we compute gradient es-
timates via a reweighting scheme that relies on knowl-
edge of unnormalized probabilities, our framework in its
present form does not naturally accommodate far-from-
equilibrium properties for which state-level probabilities
are generally not known. Opportunities to address this
limitation in future work include exploiting classic results
in non-equilibrium statistical mechanics (e.g. Jarczynski
equality), jointly learning the parameters of the attractor
of a dynamical system (similar to actor-critic methods in
reinforcement learning), and alternative methods of au-
tomatic differentiation that sacrifice accuracy for numeri-
cal stability and memory overhead. Second, the conver-
gence of this approach to niche sequence-designs has
not been stress-tested and may require further algorith-
mic innovations. A particular challenge for convergence is
the inequality between ensemble statistics computed via
a continuous representation versus a distribution of dis-
crete sequences sampled from the continuous sequence.
Third, we only explored models for which the geometry of
each particle identity is identical and probing models with
polydisperse and complex geometries may require further
methods development. Finally, directly inverting molecular
simulations has a direct tradeoff contrasting increased ac-
curacy with additional speed and compute requirements,
thus making it less appealing for design of properties for
which machine-learned approximations are comparable in
accuracy.
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Methods

General framework for optimizing particle identities
Consider a system of n particles in d dimensions where
each particle is ascribed one of m possible identities.
Let −→s ∈ Rn denote the identities of each particle where
−→s i ∈ {1,2, · · · ,m}. Given a potential energy function
U : Rn×d → R that depends on the particle identities, −→s
determines the distribution of states in the canonical en-
semble via p(−→x ;−→s ) ∼ exp(−βU(−→x ;−→s )) where β is the
inverse temperature and −→x ∈ Rn×d. Given some state-
level observable O : Rn×d → R, one is typically inter-
ested in the expected value of O in the entire ensemble,
E [O(−→x )]−→x ∼p(·;−→s ). Consequently, we consider the opti-
mization problem

argmin
−→s

E [O(−→x )]−→x ∼p(·;−→s ) (1)

Note that this is equivalent to the maximization or fixed
point variants of the optimization problem.

We define an optimization framework for Equation 1 that
(i) is general and makes minimal assumptions about the
underlying model, (ii) operates directly at the level of the
model and requires no training, (iii) yields an optimized
probability distribution of identities from which discrete
identities can be sampled, and (iv) can be combined natu-
rally with state of the art machine learning methods. Con-
sider a matrix of particle identities, π ∈ Rn×m, where πij

is the probability of the ith particle having identity j and∑
j πij = 1.0 for all i. Let S denote the set of all possible

discrete vectors of particle identities with |S| = mn. We
can then define the expected potential energy of a state
−→x as

E[U(−→x ,π)] =
∑

−→s ∈S

p(−→s |π)U(−→x ;−→s ) (2)

where

p(−→s |π) =
n∏

i=1
πi,−→s i

(3)

This yields a corresponding distribution of states in the
canonical ensemble,

p(−→x ,π) ∼ exp(−βE[U(−→x ,π)]) (4)

= exp(−β
∑

−→s ∈S

p(−→s |π)U(−→x ;−→s )) (5)

=
∏

−→s ∈S

exp[−β (p(−→s |π)U(−→x ;−→s ))] (6)

=
∏

−→s ∈S

(exp[−βU(−→x ;−→s )])p(−→s |π) (7)

∼
∏

−→s ∈S

p(−→x ;−→s )p(−→s |π) (8)

Given this generalized probability distribution, we can gen-
eralize Equation 1 for the case of probabilistic particle

identities:

argmin
π

E [O(−→x )]−→x ∼p(·;π) (9)

Note that Equation 9 reduces to Equation 1 in the case
where π is one-hot.

Crucially, π is a continuous variable and can be opti-
mized via gradient descent. Given a stochastic sam-
pler (e.g. a Langevin integrator), one can com-
pute ∇πE [O(−→x )]−→x ∼p(·;π) via Differentiable Trajectory
Reweighting (DiffTRE) (28). Consider a set of states
{−→x 1,−→x 2, · · · ,−→x T } sampled from the Boltzmann distribu-
tion defined by Equation 5 for a reference state matrix π̂.
For values of π sufficiently close to π̂ (see Methods), we
define a weight

wi = exp(−β [U (−→x i;π)−U(−→x i; π̂)])∑
j exp(−β [U(−→x j ;π)−U(−→x j ; π̂)]) (10)

for each −→x i. We can then express our expectation in terms
of these weights

E [O(−→x )] ≈
∑

i

wiO(−→x i) (11)

This yields an expression for E [O(−→x )] such that
∇πE [O(−→x )] ̸= 0. Note that wi = 1

T in the limit where
π = π̂. Importantly, gradients are not computed through
the unrolled trajectory (as in traditional differentiable MD)
but only through the energy function, relieving many of the
numerical instabilities and memory constraints that typi-
cally plague differentiable MD. This is equivalent to a low-
variance REINFORCE gradient estimator by using knowl-
edge of the unnormalized steady-state probabilities to ef-
fectively integrate over all paths yielding the same equilib-
rium state. Additionally, the set of reference states must
not be computed at every iteration (see Methods), relaxing
the computational cost imposed by running large simula-
tions.

In practice, since the rows of π must be normalized, one
optimizes a set of logits λ ∈ Rn×m that are normalized
in the loss function to yield π at each step, i.e. πi =
softmax(λi). Since Equation 9 reduces to Equation 1 only
when π is one-hot, we anneal π throughout the optimiza-
tion by introducing a temperature term τ to the normal-
ization procedure, i.e. πi = softmax(λi/τ). We find that
a simple linear annealing scheme using τstart = 1.0 and
τend = 0.01 works well in most cases.

In the general case, sampling from the distribution defined
by Equation 2 is intractable because there are mn possi-
ble permutations of state identities. However, this calcula-
tion becomes tractable in the case of an energy function in
which the total energy is expressed as the sum of pairwise
energies. Consider such an energy function for a fixed set
of particle identities −→s :

Utot(−→x ;−→s ) =
∑
i,j

Upair(−→x i,
−→x j ;−→s i,

−→s j) (12)
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This can be generalized to the case of continuous particle
identities:

E[Utot(−→x ;π)] =
∑
i,j

E[Upair(−→x i,
−→x j ;π)] (13)

where

E[Upair(−→x i,
−→x j ;π)] =

∑
−→s i,−→s j∈m

π(i,−→s i)π(j,−→s j)

×Upair(−→x i,
−→x j ;−→s i,

−→s j) (14)

Crucially, all terms in Equation 14 are independent and we
can therefore rewrite E[Upair(−→x i,

−→x j ;π)] as

E[Upair(−→x i,
−→x j ;π)] = −→

Uij ·−→πij (15)

where

(−→
Uij)kl = Upair(−→x i,

−→x j ;k, l) (16)

and
−→πij = πi ⊗πj (17)

where ⊗ denotes the Kronecker product. When performed
in serial, the complexity of this calculation reduces to
O(n2m2) and the n2 factor can be further reduced by the
use of neighbor lists. Crucially, however, the entire calcu-
lation can be highly parallelized on a modern GPU as the
terms in Equation 13 are independent. While it is stan-
dard for coarse-grained models to be pairwise, this for-
mulation could be extended to models with k-body inter-
actions where the complexity of the expected energy cal-
culation will scale as O(nkmk) (prior to any neighbor list
optimizations).

Differentiable Monte Carlo (DiffTRE)
Unlike a general reinforcement learning environment, we
often know things about a physical system under study.
Importantly, for example, we often know the probability
distribution of the microstates of a given dynamical sys-
tem. In the following, we focus on the simple case of an
equilibrium system in the canonical ensemble where the

probability of state −→x i is e−βU(−→x i)

Z where β is the inverse
temperature, U(−→x i) is the potential energy of −→x i, and
Z =

∑
j e−βU(−→x j) is the partition function.

Consider a set of states sampled from this distribution
via some control parameters θ, Xθ = {−→x 1,−→x 2, · · ·−→x N }.
Note that there are many schemes for efficiently sampling
from the Boltzmann distribution such as standard MD and
Monte Carlo (MC) algorithms, and even generative deep
learning methods. Examples of θ are parameters of the
potential energy or parameters of the initial conditions (e.g.
probabilities of nucleotide base identities in a simulation of
nucleic acids). Via ergodicity, we can compute the expec-
tation of some state-level observable O(−→x ,θ) as

⟨O(−→x ,θ)⟩−→x i∈X = 1
N

∑
i

O(−→x i,θ) (18)

This time, our expectation is defined with respect to a set
of sampled states (whose probability distribution we know)
rather than with respect to a set of trajectories (or equiv-
alently, random seeds). When formulated in this fashion,
our calculation of the expectation has no history depen-
dence; we do not care how the states are sampled, only
that they are sampled from the underlying distribution.

However, we cannot immediately compute an accurate
gradient of Equation 18. Although we know that the rel-
ative probabilities of each microstate will change as we
change θ, we lose this dependence in our gradient sig-
nal by only considering the final set of sampled states as
∇θ

1
N = 0. To recover this signal, Zhang et al. (29) and

Thaler and Zavadlav (28) independently introduced a sim-
ple reweighting scheme (termed Differentiable Trajectory
Reweighting, or DiffTRE by the latter publication) in which
we rewrite Equation 18 as

⟨O(−→x ,θ)⟩−→x i∈X =
∑

i

wiO(−→x i,θ) (19)

where

wi =
pθ(−→x i)/pθ̂(−→x i)∑
j pθ(−→x j)/pθ̂(−→x j) (20)

and θ̂ is the reference potential via which Xθ was sampled.
Equation 20 only requires unnormalized probabilities as
the normalizing factors cancel. For example, in the case
of the canonical ensemble, Equation 20 does not require
knowledge of the partition function:

wi = e−β(Uθ(−→x i)−U
θ̂

(−→x i))∑
j e−β(Uθ(−→x j)−U

θ̂
(−→x j)) (21)

Crucially, in the case where θ = θ̂, wi = 1
N but

∇θ log(p(−→x i)) ̸= 0. Thaler and Zavadlav introduced the
notion that reference states collected via θ̂ can be reused
for small differences between θ and θ̂, but as this differ-
ence grows few states dominate the average and the ref-
erence states should be resampled. This is captured via
an expression for effective sample size:

Neff = e−
∑N

i=1 wi ln(wi) (22)

See Refs. (29) and (28) for a complete introduction to this
method.

This reweighting scheme solves three major problems in
differentiable programming for dynamical systems. Fore-
most, it resolves both problems related to memory, and
numerical instability as gradients are no longer computed
with respect to unrolled trajectories. However, there is a
third benefit – the entire sampling procedure (e.g. simu-
lation code) does not have to be rewritten in an automatic
differentiation framework. Instead, one only must write the
energy function in such a framework. In addition, objec-
tive functions that do not explicitly depend on θ also do
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not have be differentiable, permitting the immediate use
of the rich ecosystem of libraries that already exist for the
analysis of MD trajectories. This reduces a massive bar-
rier to entry for differentiable programming in cases where
the unnormalized probability of sampled states is known,
particularly as it relates to larger and more complex code
bases.

In the language of stochastic gradient estimators, DiffTRE
can be regarded as a low-variance REINFORCE estima-
tor. A traditional REINFORCE estimator would regard the
probability of each state as the probability of its corre-
sponding trajectory, drastically inflating the variance of the
estimator as many trajectories can yield the same equilib-
rium state. DiffTRE permits us to use our knowledge about
the distribution from which we are sampling in our estimate
of the gradient, effectively integrating over all trajectories
for a given state.

Mpipi Force Field
Mpipi is a coarse-grained model of protein-protein and
protein-RNA interactions for studying biomolecular liquid-
liquid phase separation (LLPS) (21). Introduced in 2021,
Mpipi has gained widespread popularity for the computa-
tional study of LLPS and the underlying biophysics (55–
59). Recent machine learning methods use Mpipi to gen-
erate ground truth training data with which neural net-
works are trained to either predict ensemble properties or
generate sequences with target characteristics (23, 60).
Note that such methods for inverse design are limited not
only because they generate sequences with respect to a
learned approximation of Mpipi rather than Mpipi itself, but
also because in principle designing sequences for a dif-
ferent target ensemble property demands an entirely new
deep learning model.

In Mpipi, each monomer (i.e. amino acid or nucleic acid)
is represented a single isotropic sphere. Each monomer
type (i.e. amino acid or nucleotide identity) is assigned a
mass, diameter, charge, and energy scale. Like oxDNA, all
interactions are pairwise and the potential energy is given
by

Vmpipi =
∑
nn

Vbond +
∑

other pairs

(Velec +Vpair) (23)

where nn denotes a fixed set of consecutive bonded pairs.
Vbond is computed as a harmonic bond potential, Velec as
a Coulomb term with Debye-Hückel electrostatic screen-
ing, and Vpair as a Wang-Frenkel interaction (61). The pa-
rameters of this potential were fit to reproduce both atom-
istic potential-of-mean-force calculations and bioinformat-
ics data. See (21) for complete details of the model and
its parameterization, and see (23) for a description of the
modified parameters used in this work.

Simulations
All simulations with were performed in JAX-MD (27) on
an NVIDIA A100 80 GB GPU. We used a Langevin ther-
mostat with a timestep of 10 fs at standard conditions

of 300K and 150 mM salt concentration unless spec-
ified otherwise. We make all code available via the
following GitHub repository: https://github.com/
rkruegs123/idp-design.
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