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Supplementary Information 
 
The supplementary information for this manuscript is arranged into separate sections for theory 

and simulation and includes 5 supplementary figures. 

 

Theory 
Thermodynamic model: The mean-field description of regular solutions is used to study a 𝑁𝑁 + 1 

species fluid mixture, as defined in eq (1), which is reproduced below: 

 

𝑓𝑓 = �𝜙𝜙𝑖𝑖 log(𝜙𝜙𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

+
1
2
�  
𝑁𝑁

𝑖𝑖=1

�𝜒𝜒𝑖𝑖𝑖𝑖𝜙𝜙𝑖𝑖𝜙𝜙𝑗𝑗  
𝑁𝑁

𝑗𝑗=1

+ 𝜙𝜙𝑠𝑠 log(𝜙𝜙𝑠𝑠) + �  
𝑁𝑁

𝑖𝑖=1

𝜒𝜒𝑖𝑖𝑖𝑖𝜙𝜙𝑖𝑖𝜙𝜙𝑠𝑠 

 
Here, 𝜙𝜙𝑖𝑖 represent the volume-fraction of each species 𝑖𝑖, and 𝜙𝜙𝑠𝑠 = 1 −∑ 𝜙𝜙𝑖𝑖𝑖𝑖  is the volume 

fraction of the remaining component. This remaining species can be interpreted as a solvent, or, 

another species - if the total solute concentration is held fixed across phases. For simplicity, we 

will hereby refer to this component as solvent. 𝜒𝜒𝑖𝑖𝑖𝑖 and 𝜒𝜒𝑖𝑖𝑖𝑖 are pairwise interaction parameters that 

are typically proportional to the pair-wise interaction energies (𝜖𝜖 ) between 𝑖𝑖, 𝑗𝑗 and 𝑖𝑖, 𝑠𝑠 

respectively. Normally, the interaction parameter 𝜒𝜒𝑖𝑖𝑖𝑖 = 𝑧𝑧
2𝑘𝑘𝐵𝐵𝑇𝑇

(𝜖𝜖𝑖𝑖𝑖𝑖 −
1
2
�𝜖𝜖𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑗𝑗𝑗𝑗�), where 𝑧𝑧 is number 

of short-range contacts, and 𝜖𝜖𝑖𝑖𝑖𝑖 represents pairwise energy between components 𝑖𝑖, 𝑗𝑗. Since we 

assume component do not interact with themselves, 𝜒𝜒𝑖𝑖𝑖𝑖 ∝ 𝜖𝜖𝑖𝑖𝑖𝑖. 

 

Thermodynamic stability: A solution is thermodynamically unstable and spontaneously phase 

separates when small fluctuations around the initial composition lead to further lowering of free-

energy i.e. the hessian of the free-energy, also referred to as the Jacobian, has at-least one 

negative eigen-value. The Jacobian is: 

 

𝐽𝐽𝑖𝑖𝑖𝑖 =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝜙𝜙𝑖𝑖𝜕𝜕𝜙𝜙𝑗𝑗
=
𝛿𝛿𝑖𝑖𝑖𝑖
𝜙𝜙𝑖𝑖

+
1
𝜙𝜙𝑠𝑠

+ 𝜒𝜒𝑖𝑖𝑖𝑖 − 𝜒𝜒𝑖𝑖𝑖𝑖 − 𝜒𝜒𝑗𝑗𝑗𝑗 

 

In the limit of inert-solvent (𝜒𝜒𝑖𝑖𝑖𝑖 = 0) and initially equimolar solutes (𝜙𝜙𝑖𝑖 = 𝛽𝛽/𝑁𝑁), the above 

expression reduces to eq. (2). Note if the whole solution, including the solvent, is equi-molar, then 

𝜙𝜙𝑖𝑖 = 1
𝑁𝑁+1

;𝛽𝛽 = 𝑁𝑁
𝑁𝑁+1

.  The stability of this matrix depends on the eigen-spectrum of: 

 

𝐽𝐽 =
𝑁𝑁
𝛽𝛽
𝐼𝐼 + 𝜒𝜒𝑒𝑒𝑒𝑒𝑒𝑒; 𝜆𝜆𝐽𝐽 =

𝑁𝑁
𝛽𝛽

+ 𝜆𝜆(𝜒𝜒𝑒𝑒𝑒𝑒𝑒𝑒) 
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𝜒𝜒𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖𝑖𝑖 =
1

1 − 𝛽𝛽
+ 𝜒𝜒𝑖𝑖𝑖𝑖 

 

Since the pairwise interactions are drawn i.i.d from an underlying distribution with finite mean and 

variance i.e. 𝜒𝜒𝑖𝑖𝑖𝑖 ∼ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜈𝜈,𝜎𝜎2), the eigen-values of this matrix can be derived from Random-matrix 

theory. The eigen-values follow the semi-circle distribution between ±2𝜎𝜎√𝑁𝑁 (Figure S1), except 

for a lone eigen-value, whose value is centered around 𝑁𝑁( 1
1−𝛽𝛽

+ 𝜈𝜈) (1).  

 

The limit of stability i.e. marginal stability is determined when the minimum eigen-value 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 =

0.The corresponding eigen-vector points to the initial direction of evolution for the instability. From 

the above distribution, we can see there are 2 limits that naturally arise, since the component-

entropy contribution is : 

 

1. Condensation: If 𝑁𝑁 � 1
1−𝛽𝛽

+ 𝜈𝜈� < −2𝜎𝜎√𝑁𝑁, i.e, 𝜈𝜈 < − 2𝜎𝜎
√𝑁𝑁
− 1

1−𝛽𝛽
, only then will the smallest 

eigen-value be determined by the lone-eigen value (Fig S1B). In the limit of equi-molar 

solution, this requires 𝜈𝜈 ≤ − 2𝜎𝜎
√𝑁𝑁
− 𝑁𝑁, which represents very strong interactions on 

average. At marginal stability, 𝜈𝜈𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = − 1
𝛽𝛽
− 1

1−𝛽𝛽
. The corresponding eigen-vector, whose 

vector-angle with respect to a vector of (1,1, … . ,1)𝑁𝑁 is depicted in gold in Fig S1C, is 

largely parallel or anti-parallel this vector  (angles around 0 or 180). Hence, the initial 

instability direction is either parallel or anti-parallel to (1,1, … . ,1)𝑁𝑁 – which points to an 

instability that either increases or decreases the volume-fraction of all components. This 

behaves very similar to a bulk fluid undergoing phase separation and is named the 

condensation transition. More intuitively, if the average interaction between species is 

highly attractive, the fluid undergoes phase separation without changing composition 

since all the species like to remain inter-mixed. Rather, the interacting components phase 

separate away from the inert solvent. Overall, this condensation instability requires 𝜈𝜈 <

min (− 2𝜎𝜎
√𝑁𝑁
− 1

1−𝛽𝛽
,− 1

𝛽𝛽
− 1

1−𝛽𝛽
), which requires 𝜈𝜈 ∼ 𝑁𝑁 for equimolar solutions, which 

represent highly attractive interactions. Note that the 2nd smallest eigen-value is often 

separated by a band-gap, which corresponds to Δ = 2𝜎𝜎√𝑁𝑁 − 𝑁𝑁 � 1
1−𝛽𝛽

+ 𝜈𝜈�  (Figure S1B). 

In this study, we will focus on de-mixing instability, where there are often multiple eigen-

modes beyond the marginally stable point. 

 

2. Demixing: Contrary to (1), if 𝜈𝜈 > − 2𝜎𝜎
√𝑁𝑁
− 1

1−𝛽𝛽
, then the minimum eigen-value will be 

determined by the edge of the Wigner semi-circle distribution, which is −2𝜎𝜎√𝑁𝑁. Thus, the 
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point of marginal stability is determined by: 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = √𝑁𝑁
2𝛽𝛽

.  The corresponding eigen-vector 

is determined almost surely perpendicular to the lone eigen-value, and thus has roughly 

equal number of components with opposite signs (Fig S1C, purple distribution of angles ~ 

90 to the vector of ones). Thus the direction of instability points to 2 phases that have 

distinct compositions and referred to as a demixing transition. Note that for demixing to 

occur, the constraint on standard deviation of interactions is slacker than the 

condensation transition:  𝜎𝜎 ∼ √𝑁𝑁/2𝛽𝛽.  For values of 𝜎𝜎 > √𝑁𝑁/2𝛽𝛽,  multiple negative eigen-

values likely contribute to the observed phase behavior, as made vivid in Figures 2,3.  

 

While the stability analyses describes whether a solution will spontaneously phase-separate 

(spinodal decomposition) and characterize the initial modes of instability, we require a description 

of dynamics that captures the spatio-temporal evolution of the system, which we describe in detail 

in the subsequent subsection below. 

 

Counting the number of unstable modes: In general, for solutions that are beyond the limit of 

stability, the number of negative values can be found as the probability of finding eigen-values 

that off-set the entropic cost (𝑁𝑁/𝛽𝛽) multiplied by the total number of eigen-values. This can be 

written as: 

 

< 𝑁𝑁𝑝𝑝ℎ > = 𝑁𝑁 × 𝐹𝐹2𝜎𝜎√𝑁𝑁 �𝜆𝜆 ≤ −𝑁𝑁
𝛽𝛽
� + 1. 

Here, 𝐹𝐹 is the cdf of the semi-circle distribution with eigen-values between ±2𝜎𝜎√𝑁𝑁, defined as: 

 

𝐹𝐹2𝜎𝜎√𝑁𝑁 �𝜆𝜆 ≤
𝑁𝑁
𝛽𝛽
� = �1

2
+

�𝑁𝑁�4𝜎𝜎2−𝑁𝑁𝛽𝛽�

4𝛽𝛽𝛽𝛽𝜎𝜎2
−

sin−1� √𝑁𝑁𝛽𝛽2𝜎𝜎� 

𝜋𝜋
� ;  √𝑁𝑁

2𝛽𝛽
< 𝜎𝜎  

 

A useful approximation is made possible by noting that the eigen-values of the semi-circle 

distribution are uniformly distributed on average. Thus, the average-spacing between eigen-

values (when 𝜈𝜈 = 0) is Δ = 4𝜎𝜎√𝑁𝑁
𝑁𝑁−1

= 4𝜎𝜎√𝑁𝑁
𝑁𝑁−1

 – this is because there are roughly N-1 eigen-values in 

the semi-circle and one lone eigen-value that scales as 𝑁𝑁
1−𝛽𝛽

≈ 𝑁𝑁2 for equimolar solutions. Hence 

the number of eigen-values of the Jacobian that offset the entropic cost can be approximated as: 

𝑁𝑁𝜆𝜆𝐽𝐽<0 ≈
2𝜎𝜎√𝑁𝑁 − 𝑁𝑁

𝛽𝛽
Δ

=
𝑁𝑁 − 1

2
(1 −

√𝑁𝑁
2𝜎𝜎𝜎𝜎

) 
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The corresponding number of phases is 𝑁𝑁𝑝𝑝ℎ ≈
𝑁𝑁−1
2
�1 − √𝑁𝑁

2𝜎𝜎𝜎𝜎
� + 1, which in the limit of strongly 

variable interaction approaches a theoretical maximal limit of 𝑁𝑁+1
2

.  Note that the linear scaling 

when 𝜎𝜎 ∝ √𝑁𝑁 holds true even without the approximation, as seen from the cdf. 

 

Tracy-Widom corrections: The predictions based on the Wigner-cdf often deviate significantly 

from simulations at low values of 𝑁𝑁,𝜎𝜎 (Figure 3E). A major contribution to this deviation arises 

from the fact that the eigen-spectra of random-matrices can exhibit significant fluctuations for 

finite-sizes around the Wigner cdf – which is the basis of the theory we developed above. Tracy 

and Widom (2) used extreme-value statistics to show that the largest/smallest eigen-value of a 

random-matrix fluctuates around it’s predicted value from the Wigner cdf (±2σ√N) in a 

characteristic and skewed distribution, with fluctuations being more prominent at low N. These 

fluctuations, on average, tend to decrease the extreme eigen-value, thus potentially reducing the 

band of unstable modes and thus, has outsize effects at low σ where there are typically only 1 or 

2 unstable modes at maximum. To get an conservative estimate (lower) of the extent of this 

band-shift, we modified our theory to identify the number of unstable modes constrained by 

average of the Tracy-Widom distribution (which is smaller in magnitude than 2𝜎𝜎√𝑁𝑁 and scales 

with 𝑁𝑁−1/6). Interestingly, this theoretical estimate, which shifts predictions down in general, 

agrees substantially better with simulation data (Figure S5A) at low σ and low N.  At higher values 

of σ,N, these fluctuations become less important and the mean-field Wigner theory fits better. 

 

Optimal number of phases in ensemble with fixed 𝝈𝝈: In ensembles where the interaction 

distribution is fixed (𝜎𝜎 is fixed) and the initial solution is equimolar (𝜙𝜙𝑖𝑖 = 1
𝑁𝑁+1

;𝛽𝛽 = 𝑁𝑁
𝑁𝑁+1

), the number 

of co-existing phases at steady-state follows as: 

𝑁𝑁𝑝𝑝ℎ ≈
𝑁𝑁
2
�1 −

√𝑁𝑁
2𝜎𝜎𝜎𝜎

� =
𝑁𝑁
2
�1 −

𝑁𝑁 + 1
2𝜎𝜎√𝑁𝑁

� 

 

To identify the optimal number of phases with changing number of components, we differentiate 

w.r.t. 𝑁𝑁 and set the derivative to 0: 
𝜕𝜕𝑁𝑁𝑝𝑝ℎ
𝜕𝜕𝜕𝜕

= 0 = 3𝑋𝑋2 − 𝑎𝑎𝑎𝑎 + 1 = 0 

Where 𝑋𝑋 = √𝑁𝑁 and 𝑎𝑎 = 2𝜎𝜎. Solving these equations show that the one-root is less than 1, which 

is not feasible, and the other root 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑜𝑜𝑜𝑜𝑜𝑜 = 16

9
𝜎𝜎2 �1 − 3

8𝜎𝜎2
� ≈ 16

9
𝜎𝜎2 is the feasible solution that 

corresponds to an maxima. 

 

Dynamic model of phase-separation: The spatio-temporal evolution of the 𝑁𝑁 independent 

volume-fractions is written following Model B dynamics with diffusive fluxes proportional to the 
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gradient of the chemical potential defined as: 

 

𝜇𝜇𝑖𝑖𝑏𝑏 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝜙𝜙𝑖𝑖

= log(𝜙𝜙𝑖𝑖) − log(𝜙𝜙𝑠𝑠) + �𝜒𝜒𝑖𝑖𝑖𝑖𝜙𝜙𝑗𝑗
𝑗𝑗

 

𝑓𝑓𝑓𝑓𝑓𝑓𝑥𝑥𝑖𝑖 = −𝑀𝑀𝑖𝑖∇𝜇𝜇𝑖𝑖𝑏𝑏 

 

𝑑𝑑𝑡𝑡𝜙𝜙𝑖𝑖 + ∇. 𝑓𝑓𝑓𝑓𝑓𝑓𝑥𝑥𝑖𝑖 = 0 

  

The complete set of dynamical equations are then solved numerically using techniques discussed 

in the next section. The choice of mobility parameter is decided to be 𝑀𝑀𝜙𝜙𝑖𝑖, since in the limit of 

dilute, non-interacting solute (𝜙𝜙𝑖𝑖 ≪ 1,𝜒𝜒𝑖𝑖𝑖𝑖 = 0,𝜙𝜙𝑠𝑠 ≈ 1 − 𝜙𝜙𝑖𝑖), the flux reduces to Fickian diffusion: 

𝑓𝑓𝑓𝑓𝑓𝑓𝑥𝑥𝑖𝑖 ≈ −𝑀𝑀𝜙𝜙𝑖𝑖 �
1
𝜙𝜙𝑖𝑖
∇𝜙𝜙𝑖𝑖 −

∇𝜙𝜙𝑠𝑠
1 − 𝜙𝜙𝑖𝑖

� ≈ −𝑀𝑀∇𝜙𝜙𝑖𝑖 + 𝑂𝑂(𝜙𝜙𝑖𝑖) 

 

A similar result holds approximately when 𝑀𝑀𝑖𝑖 = 𝑀𝑀𝜙𝜙𝑖𝑖(1 − 𝜙𝜙𝑖𝑖), which we find gives results that 

agree with 𝑀𝑀𝑖𝑖 = 𝑀𝑀𝜙𝜙𝑖𝑖 (Figure S3B). Finally, the interfacial stabilization terms are added to the 

chemical potential as a component-independent gradient penalty term (𝜅𝜅 > 0): 

 

𝜇𝜇𝑖𝑖 = log(𝜙𝜙𝑖𝑖) − log(𝜙𝜙𝑠𝑠) + �𝜒𝜒𝑖𝑖𝑖𝑖𝜙𝜙𝑗𝑗
𝑗𝑗

−
𝜅𝜅
2
∇2𝜙𝜙 

These above terms can be modified to include reactions as well, an example of which, is provided 

in the subsequent section. 

 
Stability analyses: The stability analyses can be performed in general for the reaction + phase-

separation equations as follows (note we will use subscripts of 𝑗𝑗 so as not to confuse with the 

imaginary square root of −1 i.e. 𝑖𝑖) 

 
𝑑𝑑𝜙𝜙𝑗𝑗
𝑑𝑑𝑑𝑑

= ∇.���⃗ �𝑀𝑀𝑗𝑗  ∇��⃗ 𝜇𝜇𝑗𝑗� + �𝑟𝑟𝑗𝑗𝑗𝑗
𝑘𝑘

 

 

By linearizing around the initial uniform volume-fractions 𝜙𝜙𝑗𝑗(𝑟𝑟) = 𝜙𝜙0 = 𝛽𝛽/𝑁𝑁, we can track the 

evolution of small fluctuations, written in the form of its inverse fourier-transform 𝚥𝚥̂ = 𝜙𝜙0 +

∑ Aj
qexp(−𝑖𝑖 𝑞⃗𝑞. 𝑟𝑟)𝑞𝑞 . Employing the orthogonality of fourier modes, assuming equimolar solutions 

without reaction, and linearizing the equation gives the evolution of the amplitude of the 𝑞𝑞𝑡𝑡ℎ mode 

for the 𝑗𝑗𝑡𝑡ℎ component evolves as: 

𝑑𝑑𝑡𝑡𝐴𝐴𝑗𝑗
𝑞𝑞(𝑡𝑡) = −

𝑀𝑀𝑞𝑞2𝛽𝛽
𝑁𝑁

�𝐽𝐽𝑗𝑗𝑗𝑗𝐴𝐴𝑗𝑗
𝑞𝑞 −

𝑀𝑀𝑞𝑞4𝛽𝛽
𝑁𝑁

𝑘𝑘

𝜅𝜅𝐴𝐴𝑗𝑗
𝑞𝑞 
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The coupled set of modes, across components, evolve as: 

𝑑𝑑𝑡𝑡  𝐴𝐴𝑞𝑞����⃗ = −
𝑀𝑀𝑞𝑞2𝛽𝛽
𝑁𝑁

(𝐽𝐽 + 𝑞𝑞2𝜅𝜅 𝐼𝐼)𝐴𝐴𝑞𝑞����⃗  

 

The solution of this linearized equation is 𝐴𝐴𝑞𝑞����⃗ (𝑡𝑡) ∝ ∑ exp (−𝑀𝑀𝑞𝑞2𝛽𝛽
𝑁𝑁

𝜆𝜆𝑞𝑞(𝐽𝐽 + 𝑞𝑞2𝜅𝜅𝜅𝜅)𝑡𝑡) These set of 

equations are stable across all modes only if all the eigen-values of 𝐽𝐽  are positive since 𝜅𝜅 > 0. If 

the system undergoes phase separation i.e. 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝐽𝐽) < 0, then for all short-wavenumber (long 

length-scales) modes s.t. 𝑞𝑞 <  −𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚/𝜅𝜅, the instability propagates, but for larger wavenumbers 

(smaller length-scales), the interface is stabilized. The typical time for an instability to propagate 

macroscopically (𝑞𝑞 ∼ 2𝜋𝜋 is the shortest wavenumber mode under simulation parameters)  𝑡𝑡𝑐𝑐 ≈
𝑁𝑁

4𝜋𝜋2𝑀𝑀𝑀𝑀𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝐽𝐽)
. When active turnover is present, as in eq. (4), the coupled modes evolve subject to: 

 

𝑑𝑑𝑡𝑡  𝐴𝐴𝑞𝑞����⃗ = −(𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜 +
𝑀𝑀𝑞𝑞2𝛽𝛽
𝑁𝑁

(𝐽𝐽 + 𝑞𝑞2𝜅𝜅 𝐼𝐼))𝐴𝐴𝑞𝑞����⃗  

 

Here, we see that the active turnover introduces wave-number independent stabilization of the 

above equations. More specifically, in the limit of small interface, then the solution becomes 

asymptotically stable when shortest wavenumber modes (𝑞𝑞 ∼ 2𝜋𝜋)  decay i.e. 𝑘𝑘 ≫ 𝑀𝑀𝑀𝑀
𝑁𝑁|𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝐽𝐽)|

. More 

generally, when 𝑘𝑘 is finite, it stabilizes only certain eigen-modes at short-wavelengths such that: 

 

𝜆𝜆∀|𝜆𝜆| <
𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑁𝑁
𝑀𝑀𝑀𝑀4𝜋𝜋2

 

 

While those eigen modes are stabilized, the remaining modes whose magnitude are larger and 

directions are largely orthogonal to each other continue to grow, leading to phase separation. 

Since eigen-modes of the jacobian are equi-spaced on general, this relation can be transformed 

to give an approximate relation between rate of degradation and number of co-existing phases: 

 

𝑛𝑛𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑘𝑘 − 𝑛𝑛𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑘𝑘=0
𝑠𝑠𝑠𝑠 = −

𝑘𝑘√𝑁𝑁
16𝜋𝜋2𝜎𝜎

 

Surprisingly, this linearized relation derived with the assumptions outlined above matches quite 

well with simulation results (Figure 4B). More generally, the cdf of the Wigner distribution can be 

used to derive a non-linear relation with an improved fit to simulation (Figure 4B; green-line) to 

count the number of steady-state phases as below: 

𝑛𝑛𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑘𝑘 = 𝑁𝑁 × 𝐹𝐹2𝜎𝜎√𝑁𝑁 �𝜆𝜆 ≤ −
𝑁𝑁
𝛽𝛽
−
𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑁𝑁
𝑀𝑀4𝜋𝜋2𝛽𝛽

� + 1 
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Simulations 

 
Numerical implementation: The set of dynamical equations formulated in Eq. (3) are solved to 

follow the spatio-temporal evolution of the volume-fractions. All simulations are performed on a 2-

D grid of size 𝐿𝐿 × 𝐿𝐿; 𝐿𝐿 = 64, with a typical time-step 𝑑𝑑𝑑𝑑 = 5𝑒𝑒 − 6. The initial conditions are the 

specified equi-molar volume-fractions with uniform noise in composition that are uncorrelated 

across spatial positions, with a magnitude typically 1
10

 the mean volume-fraction. Following (3, 4), 

we implement a implicit (linear or L) -explicit (non-linear or NL terms) formulation to solve for the 

discrete-time evolution of the volume fraction-fields as follow: 

 
𝜙𝜙𝑖𝑖(𝑡𝑡 + 𝛿𝛿𝛿𝛿) − 𝜙𝜙𝑖𝑖(𝑡𝑡)

𝛿𝛿𝛿𝛿
= 𝑁𝑁𝑁𝑁𝑖𝑖({𝜙𝜙𝑖𝑖(𝑡𝑡)}) + 𝐿𝐿𝑖𝑖�𝜙𝜙𝑖𝑖(𝑡𝑡 + 𝛿𝛿𝛿𝛿)� 

𝑁𝑁𝐿𝐿𝑖𝑖({𝜙𝜙𝑖𝑖(𝑡𝑡)}) = ∇. �𝑀𝑀𝜙𝜙𝑖𝑖∇μi({𝜙𝜙𝑖𝑖})� + 𝐴𝐴𝐴𝐴∇4𝜙𝜙𝑖𝑖 

𝐿𝐿𝑖𝑖(𝜙𝜙𝑖𝑖) = −𝐴𝐴𝐴𝐴∇4𝜙𝜙𝑖𝑖 

 

Here, the fourth-order term is added to ensure numerical stability. The value of 𝐴𝐴 is empirically 

chosen as ≈ 0.01max (𝜒𝜒𝑖𝑖𝑖𝑖). All derivative terms and fluxes are computed in fourier space, all 

other operations are computed in real-space, and fast fourier transforms are used to go between 

representations. The IM-EX formulation can be solved in fourier form to yield: 

 

𝜙𝜙�𝑖𝑖(𝑡𝑡 + 𝛿𝛿𝛿𝛿) =
𝜙𝜙𝚤𝚤� (𝑡𝑡) + 𝑁𝑁𝚤𝚤� �𝜙𝜙𝑖𝑖(𝑡𝑡)�𝛿𝛿𝛿𝛿 

1 + 𝐴𝐴𝐴𝐴𝑞𝑞4𝛿𝛿𝛿𝛿
 

 

Here the fourier transform is defined as:  𝑓𝑓 = 1
𝑉𝑉 ∫ 𝑓𝑓(𝑟𝑟𝑉𝑉 ) exp(−𝑖𝑖 𝑞⃗𝑞.  𝑟𝑟 )𝑑𝑑𝑑𝑑 . All simulations are run with 

𝛿𝛿𝛿𝛿 = 5𝑒𝑒 − 6, 𝜅𝜅 = 0.01,𝑀𝑀 = 1.0 and run for 2 × 106 steps to ensure convergence to steady-state, 

except for the case below. To highlight convergence to steady-state, we run longer simulations 

(reported in Fig S3C) for 107 steps that highlight convergence by ∼ 106 steps. In typical 

simulations, 𝜒𝜒 is sampled randomly from a normal distribution of given mean, variance and made 

symmetric by replacing the lower diagonal values with their upper-diagonal counterparts. 

Simulations are also run with expanded grids to confirm that the observed results are mesh-

independent (Fig S3A). 

 

Analyses of simulation data: The main observables reported in this study are the number of co-

existing phases, their compositions, and the dynamical properties. A given distribution of volume-

fractions over the mesh, of the form 𝑁𝑁 × 𝐿𝐿 × 𝐿𝐿, contains the information about co-existing phases, 

where each phase is characterized by its composition (Figure 1B, Figure 2B). The bulk 

compositions are effectively 𝑘𝑘 significant attractors/vertices in the 𝑁𝑁 component composition-
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space (Figure 2B). The interfacial regimes represent connecting lines, which in general are 

curves rather than straight lines, between the various vertices. To count the distinct phases, we 

first filter out regions that are interfaces (characterized by max(∇𝜙𝜙𝑖𝑖)2 > 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ ) and flatten the 

remaining points into a matrix 𝑋𝑋;𝑁𝑁 × 𝑟𝑟, where r are the number of mesh-points in different bulk-

phases.  

 

Subsequently, PCA is performed on 𝑋𝑋 and the 𝑘𝑘 strongly non-zero eigen-modes, which 

correspond to individual phases, are counted (Figure 1B). Ideally, each mode that is not a phase 

would have an eigen-value that is zero and vice-versa. In practice, we count the number of eigen-

values of 𝑋𝑋 that are greater than ≈ 1𝑒𝑒 − 2. The logic for this threshold is that if the underlying 

compositions are randomly sampled around the mean with a typical variance of order of 

homogeneous concentration i.e. 𝜎𝜎 ∼ 0.1, eigen-value below 𝜎𝜎2 are likely to arise from random 

considerations alone (Marchenko-Pastur distribution). Thus only, compositions that vary more 

strongly than the stipulated 𝜎𝜎 correspond to bonafide phases. In practice, this approximation 

captures multiple phases, validated by theory and visualization of simulation data.  Then, every 

spatial point in 𝑋𝑋, of size 𝑁𝑁 × 1, is classified into 1 of 𝑘𝑘 phases using K-means clustering and the 

cluster-centers are identified, which correspond to typical compositions ( < 𝜙𝜙�⃗ >𝑘𝑘;𝑁𝑁 × 1) for each 

of the k-phases. With this, the reported data is obtained by 

: 

1. Phase labels: In plots where phase labels are plotted, each point on the mesh is 

assigned a phase-label from 1, … , 𝑘𝑘 depending on which phase’s typical steady-state 

composition it is closest to (< 𝜙𝜙�⃗ >𝑘𝑘,𝑠𝑠𝑠𝑠; as computed by the Euclidean distance). For 

Figure 2E, the bulk compositions of phases are computed at steady-state, and the labels 

are assigned at different time-points based on the proximity to steady-state phase 

compositions. In addition, points that are close to the initial composition 𝜙𝜙𝑖𝑖 = 𝛽𝛽/𝑁𝑁 do not 

belong to one of the 𝑘𝑘 phases. 

 
2. Component-enrichment: For each phase 𝛾𝛾, the number of enriched components is 

defined as sum of those species whose partition-ratio 𝑝𝑝𝑖𝑖
𝛾𝛾 = �<𝜙𝜙𝑖𝑖>𝛾𝛾�

𝜙𝜙𝑖𝑖
0 > 1 + 𝜖𝜖, where a small 

value of 𝜖𝜖 = 0.2 is used to weed out components that are roughly close to their bulk 

volume-fractions in the initial mixture and the particular phase. The probability distribution 

shown in Figure 2D and Figure S3 (𝑝𝑝(𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑒𝑒𝑒𝑒)) is derived from data collapsed from 

multiple co-existing phases per trajectory and across 50 replicate trajectories which only 

differ in interaction matrix, which is initialized randomly for each replicate.  
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3. Compositional similarity:  For any two phases 𝛾𝛾, 𝛿𝛿 the degree of compositional similarity is 

computed as the angle between the vectors defined by their steady-state compositions <

𝜙𝜙�⃗ >𝛾𝛾,𝑠𝑠𝑠𝑠, < 𝜙𝜙�⃗ >𝛿𝛿,𝑠𝑠𝑠𝑠. The probability distribution shown in Figure 2C and Figure S3 (𝑝𝑝(𝜃𝜃)) is 

derived from data collapsed from all pairs of co-existing phases per trajectory and across 

50 replicate trajectories which only differ in interaction matrix, which is initialized 

randomly for each replicate. 

 
4. Ancestor-analyses: Each mesh-point is assigned to the closest phase 𝛼𝛼 (by composition) 

amongst the steady-state phases or the initially unstable phase across all simulation 

time-points. We subsequently infer the origin (or “ancestor”) of each phase by looking at 

the spatial correlation when a phase begins to emerge. Across simulation conditions, we 

find that nearly all of the steady-state phases (>99%) initially arise from regions of the 

initial composition (Figure S4C). However, for a handful of trajectories (<1%), we find that 

a phase forms from one of the other steady-state phases. 
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Supplementary Figure Captions 
 
Figure S1: Eigen-spectrum of jacobian matrix dictates initial modes of instability at 
spinodal 
 
A. The eigen-spectrum of a equimolar solution undergoing demixing type instability (N=20, 𝜒𝜒 ∼

𝐷𝐷(𝜈𝜈 = 0,𝜎𝜎 = 4.8),  normalized by 𝜎𝜎√𝑁𝑁 and shifted by the entropic costs. The green 

distribution are values sampled from multiple independent realizations of the Jacobian matrix 

and the black curves are theoretical predictions. Minimum eigen-values are < 0. 

B. The eigen-spectrum of a equimolar solute mixture (𝛽𝛽 = 0.1) undergoing condensation-type 

instability (N=20, 𝜒𝜒 ∼ 𝐷𝐷(𝜈𝜈 = −6,𝜎𝜎 = 1.2),  normalized by 𝜎𝜎√𝑁𝑁 and shifted by the entropic 

costs. The green distribution are values sampled from multiple independent realizations of 

the Jacobian matrix and the black curves are theoretical predictions. Minimum eigen-values 

are < 0. 

C. The direction of the initial instability is characterized by the angle between the eigen-vector of 

the smallest eigen-value of the Jacobian and a vector of (1,1,1 … . ,1)𝑁𝑁. Demixing instabilities 

are largely orthogonal (purple, centered around 90) while condensation instabilities are either 

parallel or antiparallel (gold, centered around 0 or 180) to the initial composition i.e. splits into 

two phases of largely different or similar compositions. The individual points constituting the 

histogram come from single realizations of the Jacobian. 

 

Figure S2: Random mixtures exhibit multi-phase co-existence 
 
Left panel depict volume-fraction profiles of 12 components (labeled 𝑐𝑐0 to 𝑐𝑐15) at steady-state 

from a single trajectory with identical color-bar scales with an initially equimolar solution with 𝑁𝑁 =

12, 𝜒𝜒~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝜈𝜈 = 0,𝜎𝜎 = 5.2). Darker colors represent regions of higher volume-fraction. Top-right 

panel depicts the different phases (labeled 1 till 3) present at steady-state. The partition-ratio 

(ratio of average volume-fraction in a phase over total initial volume-fraction) of all components 

are plotted for each phase (x-axis) at steady-state.The highlighted components are enriched in 

those respective phases and the dashed-lines represent no enrichment (partition=1). 

Figure S3: Randomly interacting fluid mixtures show statistical convergence in number of 
co-existing phases, compositional heterogeneity, and staged phase separation kinetics 

A-C. Simulations tracking number of phases (y-axis) over time (x-axis) for a fixed interaction 

parameter-set (same as Figure 2) exhibit similar dynamics irrespective of mesh resolution (A), 

choice of mobility parameter (B), or number of simulation-steps (C). In all cases, solid-lines 

represents mean of 50 different trajectories, the filled regions represent 1 standard deviation. 
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D. Number of co-existing phase (y-axis) versus simulation time (x-axis, log-scale) for simulation 

conditions as in Figure S2. The solid line represents mean of 50 different trajectories, the 

filled regions represent 1 standard deviation, and the green line represents the specific 

trajectory whose steady-state properties are shown in Figure S2.  

E. Probability (pdf) and cumulative distribution (cdf) of angles between co-existing phases at 

steady-state for simulation parameters in (D). 

F. Probability (𝑝𝑝𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒) distribution of number of enriched components (x-axis, 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒) per phase at 

steady-state for simulation parameters in (D). 

 
Figure S4: Stability analyses reveals that phases take characteristic times to emerge 
macroscopically 
 

A. Probability (pdf) and cumulative distribution (cdf) of angles between eigen-vectors of the 

Jacobian matrix across different realizations. 

B. Ratio of median time for the macroscopic formation of the 𝑘𝑘𝑡𝑡ℎ phase (x-axis,k=1,2,..6), 

derived from replicate trajectories for same conditions reported in Figure 2, to ratio of 

predicted time for macroscopic emergence (SI Appendix). The dashed line represents a 

value of 1 and the error bar represents the standard-deviation in simulation data. 

C. Distribution of ancestors to an observed phase. Grey bar and text represent phases that 

demix from the originally unstable mixture and the black bar and text represent the (rare) 

population of steady-state phases that demix from one of the other co-existing phases. 

 

Figure S5: A simple scaling predicts equilibrium number of phases across diverse 
parameter regimes 
 

A. Variation of number of steady-state phases versus number of components for different σ. 

Solid lines represent predictions from Random-matrix theory, dashed-lines represent 

corrections to theory using Tracy-Widom extreme-value statistics, dots are mean of 

simulation results, and vertical dashes represent one standard-deviation around mean. 

B. Variation of number of co-existing phases at steady-state with total solute volume-

fractions (𝛽𝛽) for 𝑁𝑁 = 16,𝜎𝜎 = 4.8. Solid lines represent theoretical predictions, dots 

represent mean of simulation results, and vertical dashes represent one standard-

deviation around mean. 

C-F. Theoretical predictions of scaling of number of steady-state phases versus number of 

components in the 𝛼𝛼 (C) and the constant 𝜎𝜎 (E) ensembles. Darker lines represent higher 

values of 𝛼𝛼 and 𝜎𝜎  respectively. Solid lines are theoretical predictions of scaling of number of 
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steady-state phases versus 𝛼𝛼 (D) and 𝜎𝜎 (F). Darker lines represent higher values of 𝑁𝑁 and 

dashed-lines represents the predicted upper bound of 𝑁𝑁+1
2

 co-existing phases. 
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Figure S1: Eigen-spectrum of jacobian matrix dictates initial modes of instability at spinodal

A. The eigen-spectrum of a equimolar solution undergoing demixing type instability (N=20, χ~Norm(ν=0,σ=4.8),  normalized by σ√N 
and shifted by the entropic costs. The green distribution are values sampled from multiple independent realizations of the Jacobian 
matrix and the black curves are theoretical predictions. Minimum eigen-values are <0 indicating presence of instability.

B. The eigen-spectrum of a equimolar solute mixture (β=0.1) undergoing condensation-type instability (N=20, χ~Norm(ν=-6,σ=1.2),  
normalized by σ√N and shifted by the entropic costs. The green distribution are values sampled from multiple independent realiza-
tions of the Jacobian matrix and the black curves are theoretical predictions. Minimum eigen-values are <0 indicating instability.

C. The direction of the initial instability is characterized by the angle between the eigen-vector of the smallest eigen-value of the 
Jacobian and a vector of (1,1,1….,1)_N. Demixing instabilities are largely orthogonal (purple, centered around 90) while condensation 
instabilities are either parallel or antiparallel (gold, centered around 0 or 180) to the initial composition i.e. splits into two phases of 
largely different or similar compositions. The individual points in the histogram come from single realizations of the Jacobian.
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Figure S2: Random mixtures exhibit multi-phase co-existence 

Left panel depict volume-fraction profiles of 12 components (labeled Φ0 to Φ11) at steady-state from a single trajectory with identical 
color-bar scales with an initially equimolar solution with N=12, χ~Norm(ν=0,σ=5.2). Darker colors represent regions of higher 
volume-fraction. Top-right panel depicts the different phases (labeled 1 till 3) present at steady-state. The partition-ratio (ratio of 
average volume-fraction in a phase over total initial volume-fraction) of all components are plotted for each phase (x-axis) at 
steady-state.The highlighted components are enriched in those respective phases and the dashed-lines represent no enrichment 
(partition=1).
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Figure S3: Randomly interacting fluid mixtures show statistical convergence in number of co-existing 
phases, compositional heterogeneity, and staged phase separation kinetics
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Figure S3: Randomly interacting fluid mixtures show statistical convergence in number of co-existing phases, composition-
al heterogeneity, and staged phase separation kinetics

A-C. Simulations tracking number of phases (y-axis) over time (x-axis) for a fixed interaction parameter-set (same as Figure 2) exhibit 
similar dynamics irrespective of mesh resolution (A), choice of mobility parameter (B), or number of simulation-steps (C). In all cases, 
solid-lines represents mean of 50 different trajectories, the filled regions represent 1 standard deviation.

D. Number of co-existing phase (y-axis) versus simulation time (x-axis, log-scale) for simulation conditions as in Figure S2. The solid 
line represents mean of 50 different trajectories, the filled regions represent 1 standard deviation, and the green line represents the 
specific trajectory whose steady-state properties are shown in Figure S2. 

E-F. Probability (pdf) and cumulative distribution (cdf) of angles between co-existing phases at steady-state (E) and number of 
enriched components (F) for simulation parameters in (D).
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Figure S4: Stability analyses reveals that phases take characteristic times to emerge macroscopically

A. Probability (pdf) and cumulative distribution (cdf) of angles between eigen-vectors of the Jacobian matrix across different realiza-
tions.

B. Ratio of median time for the macroscopic formation of the k^th phase (x-axis,k=1,2,..6), derived from replicate trajectories for same 
conditions reported in Figure 2, to ratio of predicted time for macroscopic emergence (SI Appendix). The dashed line represents a 
value of 1 and the error bar represents the standard-deviation in simulation data.

C. Distribution of ancestors to an observed phase. Grey bar and text represent phases that demix from the originally unstable mixture 
and the black bar and text represent the (rare) population of steady-state phases that demix from one of the other co-existing phases.
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Figure S5: A simple scaling predicts equilibrium number of phases across diverse parameter regimes

Figure S5: A simple scaling predicts equilibrium number of phases across diverse parameter regimes

A.  Variation of number of steady-state phases versus number of components for different σ. Solid lines represent predictions from 
Random-matrix theory, dashed-lines represent corrections to theory using Tracy-Widom extreme-value statistics, dots are mean of 
simulation results, and vertical dashes represent one standard-deviation around mean.

B. Variation of number of co-existing phases at steady-state with total solute volume-fractions (β) for N=16,σ=4.8. Solid lines repre-
sent theoretical predictions, dots are mean of simulation results, and vertical dashes represent one standard-deviation around mean.

C-F. Theoretical predictions of scaling of number of steady-state phases versus number of components in the α (C) and the constant 
σ (E) ensembles. Darker lines represent higher values of α and σ  respectively. Solid lines are theoretical predictions of scaling of 
number of steady-state phases versus α (D) and σ (F). Darker lines represent higher values of N and dashed-lines represents the 
predicted upper bound of (N+1)/2 co-existing phases.
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